备考练习2022年最新中考数学三年高频真题汇总卷(含答案解析).docx
-
资源ID:28198889
资源大小:688.87KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
备考练习2022年最新中考数学三年高频真题汇总卷(含答案解析).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年最新中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、使分式有意义的x的取值范围是( )ABCD2、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )ABCD3、下列各式:中,分式有( )A1个B2个C3个D4个4、在下列选项的四个几何体中,与其他类型不同的是( )ABCD5、不等式组的解集在数轴上表示正确的是()ABCD6、如果一个角的余角等于这个角的补角的,那么这个角是( )ABCD7、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD8、下列运算中,正确的是( )ABCD9、如果单项式2a2m5bn+2与ab3n2的和是单项式,那么m和n的取值分别为()A2,3B3,2C3,2D3,210、若,则下列不等式正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、实数a、b互为相反数,c、d互为倒数,x的绝对值为,则· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·=_2、如图,在中,F是边上的中点,则_1(填“>”“=”或“<”)3、已知一种商品,连续两次降价后,其售价是原来的四分之一若每次降价的百分率都是,则满足的方程是_4、如图,圆心角AOB20°,将 旋转n°得到,则的度数是_度5、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.三、解答题(5小题,每小题10分,共计50分)1、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点(1)请写出:点的坐标为_;点的坐标为_;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为_2、如图,足球场上守门员在处开出一高球,球从离地面米的A处飞出(A在轴上),运动员乙在距点米的处发现球在自己头的正上方达到最高点,距地面约米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点距守门员多少米?(3)运动员乙要抢到足球第二个落点,他应从处再向前跑多少米?3、如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(2,6),与y轴交于点A,对称轴为直线x1(1)求抛物线的表达式;(2)求ABM的面积;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)点P是抛物线上一点,且PMBABM,试直接写出点P的坐标4、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D(1)求该抛物线的表达式及点C的坐标;(2)联结BC、BD,求CBD的正切值;(3)若点P为x轴上一点,当BDP与ABC相似时,求点P的坐标5、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式-参考答案-一、单选题1、B【分析】根据分式有意义的条件,即分母不为零求出x的取值范围即可【详解】解:由题意得:,解得,故选:B【点睛】本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键2、A【分析】根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D【详解】解:A当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;B由旋转可知OC与OC是对应线段,由旋转性质可得OC=OC,故选项B正确,不符合题意;C因为、都是旋转角,由旋转性质可得,故选项C正确,不符合题意;D由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意故选择A【点睛】本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键3、B【分析】根据分式的定义判断即可【详解】解:,是分式,共2个,故选B· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【点睛】本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型4、B【分析】根据立体图形的特点进行判定即可得到答案【详解】解:A、C、D是柱体,B是锥体,所以,四个几何体中,与其他类型不同的是B故选B【点睛】本题主要考查了立体图形的识别,解题的关键在于能够准确找到立体图形的特点5、C【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可【详解】解不等式得:x2,解不等式得:x1,不等式组的解集为1x2,在数轴上表示为:故选C【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答此题的关键6、C【分析】设这个角是,根据题意得,解方程即可【详解】解:设这个角是,根据题意得,解得x=60,故选:C【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键7、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度8、A【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项.【详解】A选项,幂的乘方,底数不变,指数相乘,所以A选项正确.B选项,同底数幂相乘,底数不变,指数相加,所以B选项错误.C选项,合并同类项,字母和字母指数不变,系数相加,所以C选项错误.D选项,积的乘方,积中每一个因式分别乘方,所以D选项错误.故选A【点睛】整式计算基础题型,掌握运算法则,熟练运用.9、B【分析】根据题意可知单项式2a2m5bn+2与ab3n2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组,解方程组即可求得m,n的值【详解】解:根据题意,得解得m3,n2故选:B【点睛】同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项10、D【分析】不等式性质1:不等式两边同时加上(减去)一个数,不等号方向不改变.;不等式性质2:不等式两边同时乘(除)一个正数,不等号方向不改变.;不等式两边同时乘(除)一个负数,不等号方向改变.;【详解】A选项,不等号两边同时×(-8),不等号方向改变,故A选项错误.;B选项,不等号两边同时-2,不等号方向不改变,故B选项错误.;C选项,不等号两边同时×6,不等号方向不改变,故C选项错误.;D选项,不等号两边同时×,不等号方向不改变,故D选项正确.;【点睛】不等式两边只有乘除负数时,不等号方向才改变.二、填空题1、6±【详解】解:a、b互为相反数,c、d互为倒数,x的绝对值为,a+b=0,cd=1,x=±,当x=时,原式=5+(0+1)×+0+1=6+;当x=时,原式=5+(0+1)×()+0+1=6.故答案为6±.· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、<【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中,F是边上的中点,故答案为:<【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键3、【分析】可设原价为1,关系式为:原价×(1降低的百分率)2=现售价,把相关数值代入即可【详解】设原价为1,则现售价为,可得方程为:1×(1x)2=故答案为1×(1x)2=【点睛】考查列一元二次方程;掌握连续两次变化的关系式是解决本题的关键4、20【分析】先根据旋转的性质得,则根据圆心角、弧、弦的关系得到DOC=AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解: 将旋转n°得到,DOC=AOB=20°,的度数为20度· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故答案为20【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了旋转的性质5、-1或1【分析】由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=±1,代入计算即可【详解】解:a、b互为相反数,c、d互为倒数,m的绝对值是1,a+b=0、cd=1,m=±1,当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1故答案为:-1或1【点睛】本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键三、解答题1、(1)(1,2);(1,0)(2)(3)【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案(1)解:根据题意作下图:根据旋转的性质得:,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式2、(1)y=-(x-6)2+5(2)足球第一次落地点C距守门员米(3)运动员乙要抢到足球第二个落点D,他应再向前跑米【分析】(1)由条件可以得出M(6,5),设抛物线的解析式为y=a(x-6)2+5,由待定系数法求出其解即可; (2)当y=0时代入(1)的解析式,求出x的值即可; (3)根据题意得到CD=EF,由-(x-6)2+5=2求出EF的长度,就可以求出OD的值,进而得出结论(1)解:根据题意,可设第一次落地时,抛物线的表达式为y=a(x-6)2+5,将点A(0,1)代入,得:36a+5=1,解得:a=-,足球开始飞出到第一次落地时,该抛物线的表达式为y=-(x-6)2+5;(2)解:令y=0,得:-(x-6)2+5=0,解得:x1=,x2=(舍去),答:足球第一次落地点C距守门员米;(3)解:如图,足球第二次弹出后的距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),-(x-6)2+5=2,解得:x1=,x2=,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·CD=x2-x1=,BD=BC+CD=米,答:运动员乙要抢到足球第二个落点D,他应再向前跑米【点睛】本题考查了运用顶点式及待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,二次函数的性质的运用,解答时求出函数的解析式是关键3、(1)y=x2-2x-2(2)3(3)(8,46)或(2,-2)【分析】(1)由题意设抛物线解析式为y=ax2+bx+c,依题意得出三元一次方程组,解方程得出a、b、c的值,即可求出抛物线的解析式;(2)根据题意连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,求出直线AB的解析式,求出点Q的坐标,得出MQ的长,再利用SABM=SMQA+SMQB,即可求出ABM的面积;(3)根据题意分PM在AB的左侧和右侧两种情况进行讨论,即可得出点P的坐标(1)解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过点B(3,1)、C(-2,6),对称轴为直线x=1,解得:,设抛物线解析式为:y=x2-2x-2.(2)如图1,连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,当x=0时,y=-2,当x=1时,y=-3,A(0,-2),M(1,-3),设直线AB的解析式为y=mx+n,把A(0,-2),B(3,1)代入得:,解得:,y=x-2,当x=1时,y=-1,Q(1,-1),MQ=-1-(-3)=2,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·SABM=SMQA+SMQB=MQ|xB-xA|=×2×|3-0|=3.(3)如图2,分两种情况分类讨论:当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),B(3,1)、M(1,-3),PMB=ABM,BD=MD,解得:t=,D(,),设直线MD的解析式为y=kx+b,解得:,直线MD的解析式为y=7x-10,解得: (舍去),P(8,46),当PM在AB的右侧时,PM交抛物线于点P,PMB=ABM,ABPM,设直线MP的解析式为y=x+d,把M(1,-3)代入得:-3=1+d,d=-4,直线MP的解析式为y=x-4,解得: (舍去),P(2,-2),· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·综上所述,点P的坐标为(8,46)或(2,-2)【点睛】本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键4、(1),点C的坐标为(0,-3)(2)(3)(-3,0)或(-,0)【分析】(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;(2)先求B、C、D三点坐标,再求证BCD为直角三角形,再根据正切的定义即可求出;(3)分两种情况分别进行讨论即可(1)解:(1)将A(-1,0)、B(3,0)代入,得 解得: 所以, 当x=0时,点C的坐标为(0,-3)(2)解:连接CD,过点D作DEy轴于点E,点D的坐标为(1,-4) B(3,0)、C(0,-3)、D(1,-4),E(0,-4),OB=OC=3,CE=DE=1,BC=,DC=,BD= BCD=90° tanCBD= (3)解:tanACO=,ACO=CBD OC =OB,OCB=OBC=45°ACO+OCB =CBD+OBC即:ACB =DBO · · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·当BDP与ABC相似时,点P在点B左侧(i)当时,BP=6P(-3,0) (ii)当时,BP=P(-,0) 综上,点P的坐标为(-3,0)或(-,0)【点睛】本题是二次函数的综合题,掌握相关知识是解题的关键5、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即可得出二次函数的解析式【详解】解:设抛物线的解析式为:,把代入解析式得,则抛物线的解析式为:【点睛】本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式