人教版八年级数学 下册教案:19.3课题学习 方案选择.doc
19.3课题学习 方案选择教学目标1.利用一次函数知识,根据实际问题背景建立一次函数模型.灵活运用变量关系建立一次函数模型并且选择最佳方案解决相关实际问题.2.让学生在探索过程中,体会“问题情境建立模型解释应用回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题,体会数学与现实的密切联系,提高解决问题的能力,体会一次函数在分析和解决实际问题中的作用.3.通过对实际问题的数据关系的探索,使学生领会分类讨论的思想和善于总结的学习态度.通过小组讨论交流合作,培养学生的合作意识和探索精神;认识到函数与现实有密切关系,感受到数学的实际价值.教学重点:建立一次函数模型解决实际问题.教学难点:分类讨论的分析方法.教学方法:合作探究课时安排:1教学设计二次备课一、情景导入做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划是非常必要的.应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择. 提问:你能说说生活中需要选择方案的例子吗? 二、新知构建1.怎样选取上网收费方式问题一:怎样选取上网收费方式?下表给出A,B,C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时选取哪种方式能节省上网费? 引导学生阅读教师给出的材料,并思考下列问题:(1)“选择哪种方式上网”的依据是什么? (2)方式A,B中,上网费由哪些部分组成的?方式C上网费是多少钱?学生通过阅读材料进行思考,交流老师提出的问题.教师解析:(1)“选择哪种方式上网”的依据是先确定三种方式的上网费分别是多少,费用最少的就是最佳方案.(2)方式A,B收费为:当上网时间不超过规定时间时,上网费用=月使用费;当上网时间超过规定时间时,上网费用=月使用费+超时费.方式C收费为:120元.追问:(1)你能用适当的方法表示出A,B,C三种方式的上网费用吗?(2)设上网时间为x h,上网费用为y元,你能用数学关系式表示y与x的关系吗?学生思考后,小组讨论,得出结论,老师适时引导和点拨.教师解析:方式A:当上网时间不超过25 h时,上网费=30元;当上网时间超过25 h时,上网费=30+超时费=30+0.0560(上网时间-25).方式A:当0x25时,y1=30;当x>25时,y1=30+0.0560(x-25),即y1=3x-45.故y1=教师讲解A的方式后,让学生类似地写出B,C方式的收费关系式:方式B:y2=;方式C:y3=120(x0).提问:用什么方法比较函数y1,y2,y3 的大小呢? 学生独立思考, 有的学生可能会用不等式或方程考虑,但发现由于y1,y2 是分段函数,用不等式或方程比较麻烦,此时教师引导学生还可以借助函数图象来分析问题和解决问题.教师解析: (1)设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C上网费用为y3元,则y1=y2=y3=120(x0).问题转化为比较y1,y2,y3 的大小.(2)引导学生画出函数的图象:由函数图象可知: (1)函数y1=3x-45与函数y2=50的图象的交点横坐标满足:3x-45=50,故交点的横坐标为x=31, (2)函数y2=3x-100与函数y3=120的图象的交点横坐标满足:3x-100=120, 故交点的横坐标为x=73.由数形结合思想可知:当上网时间不超过31小时40分钟时,选择方式A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱; 当上网时间超过73小时20分钟时,选择方案C最省钱.引导学生写出详细的解答过程:解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C上网费用为y3元,则y1=y2=y3=120(x0).(1)令y1=y2,即3x-45=50,解方程,得x=31.(2)令y2=y3,即3x-100=120,解方程,得x=73.画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.2.怎样租车问题二:某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示 :甲种客车乙种客车载客量(人/辆)4530租金(元/辆)400280(1)共需租多少辆汽车? (2)给出最节省费用的租车方案.引导学生阅读教师给出的材料,并思考下列问题:(1)租车的方案有几种?(2)如果单独租甲种车需要多少辆?单独租乙种车需要多少辆?(3)如果甲、乙两种车都租,你能确定租车的车辆范围吗?(4)要保证240名师生有车坐,则汽车总数不能小于.要使每辆汽车上至少有1名教师,则汽车总数不能大于.综合起来可知汽车总数为.学生根据教师所提出的问题进行思考,利用分类讨论的数学思想进行求解.解:(1)要保证240名师生有车坐,由甲种客车每辆载客45人可知汽车总数不能小于6;要使每辆汽车上至少有1名教师,有6名教师可知汽车总数不能大于6.综合起来可知汽车总数为6.(2)若单独租甲种车,需要费用:4006=2400(元),不满足总费用2300元的限额.若租甲、乙两种车,设租用x辆甲种客车,则租用(6-x)辆乙种客车,则车费y与 x 的函数关系式为y=400x+280(6-x)=120x+1680.由题意可知x应满足:_.解这个不等式组,得4x.x为正整数,x=4或5.综上可知:共有两种方案:方案一:租4辆甲种客车,2辆乙种客车,y=1204+1680=2160(元).方案二:租5辆甲种客车,1辆乙种客车,y=1205+1680=2280(元).故应选择方案一,它的费用最少,为2160元.三、课堂小结1.本节课学习了用一次函数解决实际问题的基本思路: 2.本节课渗透的数学思想方法.(建立数学模型、数形结合、分类讨论)3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.四、板书设计1.怎样选取上网收费方式例12.怎样租车例2作业设计必做教材第105页活动1.选做 教材第105页活动2.教学反思