难点详解北师大版八年级数学下册第六章平行四边形定向测试练习题(含详解).docx
-
资源ID:28200422
资源大小:500.95KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版八年级数学下册第六章平行四边形定向测试练习题(含详解).docx
北师大版八年级数学下册第六章平行四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2()A90°B180°C270°D360°2、下列图形中,三角形ABC和平行四边形ABDE面积相等的是()ABCD3、如图,在RtABC中,ACB90°,BAC30°,BC2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连CE,则CE的长不可能是()A1.2B2.05C2.7D3.14、如图,D、E分别为ABC的边AB、AC的中点连接DE,过点B作BF平分ABC,交DE于点F若EF4,AD7,则BC的长为()A22B20C18D165、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D246、正八边形的外角和为( )ABCD7、如图,在ABC和ADE中,ABAC,ADAE,且EADBAC80°,若BDC160°,则DCE的度数为()A110°B118°C120°D130°8、如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系正确的是( )AB且CD9、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180°B220°C240°D260°10、四边形中,如果,则的度数是( )A110°B100°C90°D30°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正边形的每个内角都等于120°,则这个正边形的边数为_2、如图,在四边形ABCD中,在边AB,BC上分别找一点E,F使周长最小,此时_3、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连_条对角线4、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _5、如果一个多边形的内角和为1440°,则这个多边形的边数为_;正八边形的每个内角为_度三、解答题(5小题,每小题10分,共计50分)1、如图1,在RtABC中,BAC90°,AB4,以AB为边在AB上方作等边ABD,以BC为边在BC右侧作等边CBE,连结DE(1)当AC5时,求BE的长(2)求证:BDDE(3)如图2,点C与点C关于直线AD对称,连结CE求CE的长连结CD,当CDE是以CE为腰的等腰三角形时,写出所有满足条件的AC长: (直接写出答案)2、如图,已知,将绕着点A逆时针方向旋转得,点B,C的对应点分别是点D,E(1)画出旋转后的;(2)延长线段与,它们交于点N求的度数3、如图1,在ABC中,ABAC,BAC,点D、E分别在边AB、AC上,ADAE,连接DC,点F、P、G分别为DE、DC、BC的中点(1)观察猜想:图1中,线段PF与PG的数量关系是 ,FPG (用含的代数式表示)(2)探究证明:当ADE绕点A旋转到如图2所示的位置时,小新猜想(1)中的结论仍然成立,请你证明小新的猜想4、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF5、如图,四边形中,过点作,垂足为,且连接,交于点(1)探究与的数量关系,并证明;(2)探究线段,的数量关系,并证明你的结论-参考答案-一、单选题1、C【分析】首先根据三角形内角和定理算出的度数,再根据四边形内角和为,计算出的度数【详解】解:,故选:C【点睛】本题主要考查了三角形内角和定理,多边形内角和定理,解题的关键是利用三角形的内角和,四边形的内角和2、C【分析】根据三角形的面积公式和平行四边形的面积公式解答即可【详解】解:三角形ABC的面积,平行四边形ABDE的面积4×28,不相等;三角形ABC的面积,平行四边形ABDE的面积4×28,相等;三角形ABC的面积,平行四边形ABDE的面积4×28,相等;三角形ABC的面积,平行四边形ABDE的面积4×28,相等;故选:C【点睛】此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答3、D【分析】取AB的中点F,得到BCF是等边三角形,利用三角形中位线定理推出EF=BD=1,再分类讨论求得,即可求解【详解】解:取AB的中点F,连接EF、CF,BAC=30°,BC=2,AB=2BC=4,BF=FA=BC=CF=2,ABC=60°,BCF是等边三角形,E、F分别是AD、AB的中点,EF=BD=1,如图:当C、E、F共线时CE有最大值,最大值为CF+EF=3;如图,当C、E、F共线时CE有最小值,最小值为CF-EF=1;,观察各选项,只有选项D符合题意,故选:D【点睛】本题考查了等边三角形的判定和性质,三角形中位线定理,分类讨论求得CE的取值范围是解题的关键4、A【分析】根据D、E分别为ABC的边AB、AC的中点,可得DE是ABC的中位线,则,然后证明ABF=DFB,得到DF=BD=7,则DE=DF+EF=11,再由,进行求解即可【详解】解:D、E分别为ABC的边AB、AC的中点,DE是ABC的中位线,DFB=CBF,BF平分ABC,ABF=CBF,ABF=DFB,DF=BD=7,DE=DF+EF=11,故选A【点睛】本题主要考查了三角形中位线定理,等腰三角形的性质与判定,角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握三角形中位线定理5、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质6、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键7、C【分析】先根据四边形的内角和可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据角的和差即可得【详解】解:在四边形中,即,在和中,故选:C【点睛】本题考查了四边形的内角和、三角形全等的判定定理与性质,正确找出两个全等三角形是解题关键8、B【分析】证明ADEADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可【详解】解:AD平分BAC,BAD=CAD,DEAB,DFAC,DE= DF,在ADE和ADF中,ADEADF(HL),AE= AF,AD是线段EF的垂直平分线,ADEF且EG=FG,故选项B正确;DEAB,DFAC,AED=AFD=90°,BAC+EDF=360°-AED-AFD =180°,BAC不一定等于90°,EDF也不一定等于90°,故选项C错误;EDF90°,而AFD=90°,EDF+AFD180°,DE与AC不一定平行,故选项D错误;AED=90°,DE与AE不一定相等,AG与DG也不一定相等,故选项A错误;故选:B【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键9、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键10、C【分析】根据四边形内角和是360°进行求解即可【详解】解:四边形的内角和是360°,故选:C【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键二、填空题1、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解【详解】解:设所求正边形边数为,则,解得,故答案是:6【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理2、112°度【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E',交BC于F',则点即为所求,利用轴对称的性质结合四边形的内角和即可得出答案【详解】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E',交BC于F',则点E',F'即为所求 四边形ABCD中, , 由轴对称知,ADE'=P,CDF'=Q, 在PDQ中,P+Q=180°-ADC =, ADE'+CDF'=P+Q=34°, 故答案为【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及四边形的内角和定理等知识,根据已知得出E,F的位置是解题关键3、6【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数【详解】解:设此多边形的边数为n,由题意得:(n-2)×180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6【点睛】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n-2)4、1【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键5、10 135 【分析】n边形的内角和是(n-2)180°,代入就得到一个关于n的方程,就可以解得边数n当n=8时,利用即可得到正八边形的每个内角的度数【详解】解:根据题意,得:(n-2)180=1440,解得:n=10所以此多边形的边数为10;正八边形的每个内角为135°故答案为:10;135【点睛】本题考查了多边形的内角和公式,已知多边形的内角和求边数,可以转化为解方程的问题解决三、解答题1、(1);(2)见解析;(3)4;4或【分析】(1)证明BACBDE(SAS),利用全等三角形的性质求解即可;(2)证明BACBDE(SAS),利用全等三角形的性质可得BACBDE90°,即可得出结论;(3)连接AC,由(2)知BACBDE(SAS),可得ACDE,BACBDE90°,则ADE60°+90°150°,求出CADBACBAD90°60°30°,根据对称的性质得DACDAC30°,ACDEAC,得出ADE+DAC180°,可得DEAC,可得四边形ACED是平行四边形,即可得CEADAB4;分两种情况:CEDE时,CECD时,根据等腰三角形的性质即可求解【详解】解:(1)ABD,CBE都是等边三角形,ABDCBE60°,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90°,BEBC在RtABC中,AB4,AC5,;(2)证明:ABD,CBE都是等边三角形,ABDCBE60°,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90°,BDDE;(3)连接AC,由(2)知BACBDE(SAS),ACDE,BACBDE90°,ADE60°+90°150°,CADBACBAD90°60°30°,由对称的性质得DACDAC30°,ACDEAC,ADE+DAC180°,DEAC,四边形ACED是平行四边形,CEADAB4;分两种情况:CEDE时,CE4,四边形ACED是平行四边形,CEDEAC4,由对称的性质得ACAC4,CECD时,作CFDE于F,CECD,CFDE,DFEF,CFE90°,四边形ACED是平行四边形,CEFDAC30°,综上,AC长为4或故答案为:4或【点睛】本题属于几何变换综合题,考查了等边三角形的性质,对称的性质,全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,注意分类讨论思想的运用2、(1)见解析;(2)【分析】(1)根据旋转的性质作出图形即可;(2)根据将绕着点A逆时针方向旋转得可得,则有,再根据四边形的内角和是360°可求出结果【详解】(1)如图ADE就是所求的图形.(2)绕着点A逆时针方向旋转得, ,,. .【点睛】本题考查作图旋转变换,旋转的性质,四边形的内角和等知识,熟悉相关性质是解题的关键3、(1)PFPG,180°;(2)见解析【分析】(1)根据等腰三角形的性质和三角形中位线定理解答即可;(2)连接BD,CE,利用全等三角形的判定和性质以及三角形中位线定理解答即可【详解】解:(1)如图1:中,,点,分别在边,上,即点,分别为,中点,点,分别为,中点,故答案为:;(2)如图2,连接BD,CE,由题意知ABAC,BADCAE,ADAE,ABDACE(SAS),BDCE,ABDACE,点F、P、G分别为DE、DC、BC的中点,PF,PG分别是CDE和CDB的中位线,PFPGPGBD,PFCE,PGCDBC,DPFDCE,FPGDPFDPGDCEPGCDCBACDACEDBCDCBACDABDDBCDCBABCACB,ABCACB180°BACFPG180°;【点睛】本题属于几何变换综合题,关键是根据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判定和性质进行解答4、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键5、(1)DAE+CAE=90°,理由见解析;(2)AF=EF+CE,理由见解析【分析】(1)设CAE=,先证EAB=EBA=45°,再证DAC=180°-DCA-ADC=90°-2,最后由DAE+CAE=DAC+CAE+CAE得出结论;(2)延长DC交AE延长线于G,连接BG,先证CEAGEB,再证四边形ABGD是平行四边形,最后根据平行四边形的性质解答即可【详解】解:(1)DAE+CAE=90°,理由:设CAE=,AEBE,AEB=90°,AE=BE,EAB=EBA=45°,CDAB,DCA=CAB=45°+,AC=AD,DCA=ADC=45°+,DAC=180°-DCA-ADC=90°-2,DAE+CAE=DAC+CAE+CAE=90°-2+=90°;(2)AF=EF+CE,理由:延长DC交AE延长线于G,连接BG,CDAB,ECG=EBA=EAB=CGE=45°,CE=EG,AE=BE,又CEA=GEB=90°, CEAGEB,AC=GB=AD,ACE=BGE,CAE=GBE,GEB=90°,AGB+GBE=90°,由(1)知DAE+CAE=90°,DAE=AGB,ADBG,DGAB,四边形ABGD是平行四边形,AF=GF,GF=EF+GE=EF+CE,AF=EF+CE【点睛】本题考查了全等三角形的判定与性质,直角三角形的性质及平行四边形的判定与性质,正确作出辅助线是解题的关键