欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    强化训练京改版九年级数学下册第二十五章-概率的求法与应用综合测评试卷(含答案解析).docx

    • 资源ID:28202012       资源大小:420.65KB        全文页数:22页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    强化训练京改版九年级数学下册第二十五章-概率的求法与应用综合测评试卷(含答案解析).docx

    九年级数学下册第二十五章 概率的求法与应用综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD2、下列说法正确的是()A掷一枚质地均匀的骰子,掷得的点数为3的概率是B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D在同一年出生的400个同学中至少会有2个同学的生日相同3、数学兴趣小组在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制了如图所示的频率分布散点图,则符合这一结果的试验可能是( )A抛掷一枚硬币,正面向上的概率B抛掷一枚骰子,朝上一面的点数为3的倍数的概率C从装有3个红球、2个黄球的袋子中,随机摸出1个球为红球的概率D一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率4、一个不透明的袋子中有2个红球,3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红球的概率为( )ABCD5、甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制统计图如图所示,符合这一结果的试验可能是( )A抛一枚硬币,出现正面的概率B任意写一个正整数,它能被 3 整除的概率C从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率D掷一枚正方体的骰子,出现 6 点的概率6、下列说法正确的有( )等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形无理数在和之间从,这五个数中随机抽取一个数,抽到无理数的概率是一元二次方程有两个不相等的实数根若边形的内角和是外角和的倍,则它是八边形A个B个C个D个7、如图,直线,直线c与直线a、b都相交,从,这四个角中任意选取2个角,则所选取的2个角互为补角的概率是( )ABCD8、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )ABCD9、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()ABCD10、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个A12B15C18D54第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_2、有四张正面分别标有数字-4,-3,-2,1,的不透明卡片,它们除数字不同外其他全部相同,现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为,则使得二次函数当时随的增大而减小,且一元二次方程有两个不相等的实数根的概率是_3、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是_4、某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰好是一男一女的概率是 _5、为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校开展了远程网络教学,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论小宁和小娟都参加了远程网络教学活动,请求出某一时间内两人恰好选择同一种学习方式的概率为_三、解答题(5小题,每小题10分,共计50分)1、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:洗手监督岗,戴口罩监督岗,就餐监督岗,操场活动监督岗李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗(1)王老师被分配到“就餐监督岗”的概率为 ;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率2、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由3、为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题: (1)本次调查的学生人数是_人;(2)图2中是_度,并将图1条形统计图补充完整;(3)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率4、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据摸球的次数n1001502005007001000摸到黑球的次数m242960126177251摸到黑球的频率0.240.1930.300.2520.253a(1)根据上表数据计算a_;估计从袋中摸出一个球是黑球的概率是_(精确到0.01)(2)估算袋中白球的个数5、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“4070分钟以内完成”,C表示“7090分钟以内完成”,D表示“90分钟以上完成”根据调查结果,绘制成两种不完整的统计图请结合统计图,回答下列问题(1)这次调查的总人数是 人;(2)扇形统计图中,B类扇形的圆心角是 °;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率-参考答案-一、单选题1、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图2、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D【点睛】本题考察了概率解题的关键与难点在于了解概率概念与求解3、C【分析】根据统计图可知,试验结果在0.6附近波动,即其概率P0.6,计算四个选项的概率,约为0.6者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、抛掷一枚骰子,朝上一面的点数为3的倍数的概率为,故此选项不符合题意;C从装有3个红球、2个白球袋子中,随机摸出一球为红球的概率为,故此选项符合题意;D一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率为,故此选项不符合题意;故选:C【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解4、D【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,从袋子中随机摸出一个球,它是红色球的概率为 ,故选:D【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)5、B【分析】根据统计图可知频率随着次数的增加稳定在左右,进而求得各项的概率即可求解【详解】解:A. 抛一枚硬币,出现正面的概率为B. 任意写一个正整数,它能被 3 整除的概率为C. 从一装有 1 个白球和 2 个红球的袋子中任取一球,取到红球的概率为D. 掷一枚正方体的骰子,出现 6 点的概率为根据统计图可知频率随着次数的增加稳定在左右,故选B【点睛】本题考查了根据描述求简单概率,用频率估计概率,分别计算概率并结合统计图求解是解题的关键6、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案【详解】解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;无理数在和之间,正确,故本选项符合题意;在,这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;正确的有个;故选:【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键7、B【分析】用列表法列出所有结果数,再求出所选取的2个角互为补角结果数,即可求解【详解】解:从,这四个角中任意选取2个角,列表可得:,共有12种结果,其中所选取的2个角互为补角有6种结果(,)、(,)、(,)、(,)、(,)、(,)所选取的2个角互为补角的概率为故选B【点睛】此题考查了列表法或树状图求概率,涉及了平行线的性质以及补角的定义,解题的关键是掌握列表法或树状图求概率的方法8、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算【详解】解:依题意得P(朝上一面的数字是偶数)故选B【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解9、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是.故选:B【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=10、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比2、【分析】根据二次函数的性质将的取值范围求出来,再根据一元二次方程根的判别式求出的取值范围,最后确定的取值个数,从而求出概率【详解】解:二次函数的解析式为:对称轴为:,开口向上当时随的增大而减小满足该条件的为和一元二次方程有两个不相等的实数根同时满足这两个条件的的值为和同时满足这两个条件的的值的概率为:故答案为:【点睛】本题主要考查了二次函数的性质和一元二次方程根的判别式,以及求概率,熟练掌握二次函数的性质和一元二次方程根的判别式是解答本题的关键3、【分析】根据简单概率公式进行计算即可【详解】解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色则指针对准红色区域的可能性大小是故答案为:【点睛】本题考查了几何概率,立即题意是解题的关键4、【分析】列举出所有等可能的情况数,让选出的恰为一男一女的情况数除以总情况数即为所求的概率【详解】解:根据题意画图如下:共有6种等可能的情况数,其中一男一女的情况有4种,则选出的恰为一男一女的概率是4÷6=故答案是:【点睛】此题考查了列表法与树状图法求概率,解答此题的关键是用树形法列举出所有可能的情况,再根据概率公式解答5、#【分析】用分别表示:在线阅读、在线听课、在线答疑、在线讨论,再利用列表的方法求解学习方式中所有的等可能的结果数,再确定两人选择相同的学习方式的结果数,再利用概率公式可得答案.【详解】解:用分别表示:在线阅读、在线听课、在线答疑、在线讨论,列表如下: 由表格信息可得:所有的等可能的结果数有16种,而两人选择相同的学习分式的可能的结果数有4种,所以:某一时间内两人恰好选择同一种学习方式的概率为: 故答案为:【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,熟练的列表得到所有的等可能的结果数是解本题的关键.三、解答题1、(1);(2)李老师和王老师被分配到同一个监督岗的概率为【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算【详解】解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,王老师被分配到“就餐监督岗”的概率;故答案为:;(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,李老师和王老师被分配到同一个监督岗的概率【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率2、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数×成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、(1)40;(2)54;补图见解析;(3)【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)用360°乘以自主学习的时间是0.5小时的人数所占的百分比即可求出,再用总人数乘以自主学习的时间是1.5小时的人数所占的百分比,即可得出答案,从而补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中A的情况,再利用概率公式求解即可求得答案【详解】解:(1)自主学习的时间是1小时的有12人,占30%,则本次调查的学生人数是12÷30%=40(人),故答案为:40;(2),故答案为:54;自主学习的时间是0.5小时的人数为40×35%=14;补充图形如图: (3)画树状图得:共有12种等可能的结果,选中小亮A的有6种可能,P(A)=【点睛】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比4、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可【详解】解:(1)251÷1000=0.251;大量重复试验事件发生的频率逐渐稳定到0.25附近,估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25(2)设袋中白球为x个,x=12,经检验x=12是方程的解,答:估计袋中有2个白球【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近5、(1)40;(2)108;(3)【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360°乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可【详解】解:(1)参加这次调查的学生总人数为6÷15%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比也考查了统计图

    注意事项

    本文(强化训练京改版九年级数学下册第二十五章-概率的求法与应用综合测评试卷(含答案解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开