欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试题沪教版七年级数学第二学期第十四章三角形章节测试练习题(精选).docx

    • 资源ID:28202069       资源大小:1.05MB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试题沪教版七年级数学第二学期第十四章三角形章节测试练习题(精选).docx

    沪教版七年级数学第二学期第十四章三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )ASSSBSASCASADAAS2、尺规作图:作角等于已知角示意图如图所示,则说明的依据是( ) ASSSBSASCASADAAS3、如图,ABCDEF,点B、E、C、F在同一直线上,若BC7,EC4,则CF的长是( )A2B3C4D74、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:;为等边三角形;.其中正确的结论个数是( )A1个B2个C3个D4个5、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD6、下列各组线段中,能构成三角形的是( )A2、4、7B4、5、9C5、8、10D1、3、67、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,添加下列条件不能判定的是( )ABCD8、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,139、如图,ABC中,ABC45°,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,DHBC于H,交BE于G,下列结论中正确的是( )BCD为等腰三角形;BFAC;CEBF;BHCEABCD10、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是ABCD不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点G分别为AD与CF的中点,若,则AC=_2、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是_3、如图,在中,则的大小等于_度4、如图,ABCD,若要判定ABDCDB,则需要添加的一个条件是 _5、ABC的高AD所在直线与高BE所在直线相交于点F且DFCD,则ABC_三、解答题(10小题,每小题5分,共计50分)1、如图,点B,F,C,E在一条直线上,AB=DE,B=E,BF=CE求证:AC=DF2、如图,在等腰ABC和等腰ADE中,ABAC,ADAE,BACDAE且C、E、D三点共线,作AMCD于M若BD5,DE4,求CM3、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则_度4、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由5、如图,已知点E、C在线段BF上,求证:ABCDEF6、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续探究BOC与BAC的数量关系,给出证明7、下面是“作一个角的平分线”的尺规作图过程已知:如图,钝角求作:射线OC,使作法:如图,在射线OA上任取一点D;以点为圆心,OD长为半径作弧,交OB于点E;分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;作射线OC则OC为所求作的射线完成下面的证明证明:连接CD,CE由作图步骤可知_由作图步骤可知_,(_)(填推理的依据)8、阅读填空,将三角尺(MPN,MPN=90°)放置在ABC上(点P在ABC内),如图所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50°,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索:如图所示,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 9、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:10、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:BDCE-参考答案-一、单选题1、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得【详解】解:三根木条即为三角形的三边长,即为利用确定三角形,故选:A【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键2、A【分析】利用基本作图得到ODOCODOC,CDCD,则根据全等三角形的判定方法可根据“SSS”可判断OCDOCD,然后根据全等三角形的性质得到AOBAOB【详解】解:由作法可得ODOCODOC,CDCD,所以根据“SSS”可判断OCDOCD,所以AOBAOB故选:A【点睛】本题考查了作图基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理3、B【分析】根据全等三角形的性质可得,根据即可求得答案【详解】解:ABCDEF,点B、E、C、F在同一直线上,BC7,EC4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键4、D【分析】由SAS即可证明,则正确;有CAE=CDB,然后证明ACMDCN,则正确;由CM=CN,MCN=60°,即可得到为等边三角形,则正确;由ADCE,则DAO=NEO=CBN,由外角的性质,即可得到答案【详解】解:DAC和EBC均是等边三角形,AC=CD,BC=CE,ACD=BCE=60°,ACD+DCE=BCE+DCE,即ACE=BCD,MCN=180°-ACD-BCE=60°,在ACE和DCB中,ACEDCB(SAS),则正确;AE=BD,CAE=CDB,在ACM和DCN中,ACMDCN(ASA),CM=CN,;则正确;MCN=60°,为等边三角形;则正确;DAC=ECB=60°,ADCE,DAO=NEO=CBN,;则正确;正确的结论由4个;故选D【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键5、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键6、C【分析】根据三角形的三边关系定理逐项判断即可得【详解】解:三角形的三边关系定理:任意两边之和大于第三边A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键7、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键8、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键9、C【分析】根据ABC45°,CDAB可得出BDCD;利用AAS判定RtDFBRtDAC,从而得出BFAC;再利用AAS判定RtBEARtBEC,即可得到CEBF;由CEBF,BHBC,在三角形BCF中,比较BF、BC的长度即可得到CEBH【详解】解:CDAB,ABC45°,BCD是等腰直角三角形BDCD,故正确;在RtDFB和RtDAC中,DBF90°BFD,DCA90°EFC,且BFDEFC,DBFDCA又BDFCDA90°,BDCD,DFBDACBFAC,故正确;在RtBEA和RtBEC中BE平分ABC,ABECBE又BEBE,BEABEC90°,RtBEARtBECCEACBF,故正确;CEACBF,BHBC,在BCF中,CBEABC22.5°,DCBABC45°,BFC112.5°,BFBC,CEBH,故错误;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点10、C【分析】由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案【详解】解:,平分,同理,即故选:C【点睛】本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键二、填空题1、4【分析】根据SAS证明,由全等三角形的性质得,由,得,推出,都是等腰三角形,故得,设,则,列出等量关系式解出,即可得出【详解】点G分别为AD与CF的中点,都是等腰三角形,设,则,解得:,故答案为:4【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键2、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论【详解】解:当为底时,其它两边都为,、可以构成三角形,周长为;当为底时,其它两边都为,、可以构成三角形,周长为;故答案为:或【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要3、【分析】先根据等腰三角形的性质得出,再根据三角形外角的性质得出求出的度数,最后根据三角形内角和求出的度数即可.【详解】解:,故答案为:54【点睛】此题考查了等腰三角形的性质、三角形内角和定理和外角的性质,掌握相应的性质和定理是解答此题的关键.4、1=2(或填AD=CB)【分析】根据题意知,在ABD与CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加1=2即可由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:在ABD与CDB中,AB=CD,BD=DB,添加1=2时,可以根据SAS判定ABDCDB,添加AD=CB时,可以根据SSS判定ABDCDB,故答案为1=2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角5、45°或135°【分析】根据题意,分两种情况讨论:当为锐角三角形时;当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得【详解】解:如图所示:当为锐角三角形时,在BDF与中,BDFADC,;如图所示:当为钝角三角形时,在BDF与中,BDFADC,综合可得:为或,故答案为:或【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键三、解答题1、见解析【分析】先由BF=CE说明BC= EF然后运用SAS证明ABCDEF,最后运用全等三角形的性质即可证明【详解】证明:BF= CE, BC= EF 在ABC和DEF中,ABCDEF(SAS) AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明ABCDEF是解答本题的关键2、CM7【分析】根据题意由“SAS”可证AECADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案【详解】解:BACDAE,BACBAEDAEBAE,BADCAE,在AEC和ADB中,AECADB(SAS),又BD5,CEBD5,ADAE,AMCD,DE4,CMCE+EM5+27【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键3、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,BACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDECDF;EDFD,,EDAD,BACBBCF23°,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算4、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路5、见解析【分析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键6、(1)见解析;BOC2A,见解析;(2)BOC2BAC,见解析【分析】(1)连接AO并延长AO至点E,根据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BOEBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答7、OE; CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论【详解】证明:连接CD,CE由作图步骤可知_OE_由作图步骤可知_CE_,(_全等三角形对应角相等_)故答案为:OE; CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了全等三角形的判定和性质8、(1)90,40 ;(2)ABP+ACP+A=90°;(3)A+ACPABP=90°【分析】(1)由三角形内角和为180°计算和中的角的关系即可(2)由(1)所得即可得出ABP、ACP、A的关系为ABP+ACP+A=90°(3)由三角形外角的性质即可推出A+ACPABP=90°【详解】(1)在中MPN=90°PBC+PCB=180°-MPN=180°-90°=90°在中A+ABC+ACB=180°又ABC=PBC+ABP,ACB=ACP+BCPA+PBC+ABP +ACP+BCP =180°PBC+PCB=90°,A=50°ABP +ACP=180°-90°-50°=40°(2)由(1)问可知A+PBC+ABP +ACP+BCP =180°又PBC+PCB=90°A+ABP +ACP=180°-(PBC+PCB)=180°-90°=90°(3)如图所示,设PN与AB交于点HA+ACP=AHP又ABP+MPN =AHPA+ACP=ABP+MPN又MPN =90°A+ACP =90°+ABPA+ACPABP=90°【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和9、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60°,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60°,又DGAC,BDGBGD60°,BDG是等边三角形,AGD180°BGD120°,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180°ACB)60°,BCEACBACE120°AGD,ABAC,点D为BC的中点,ADBADC90°,又BDG60°,ADE60°,ADGEDC30°,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键10、见解析【分析】过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=EF,BF-DF=CF-EF,BD=CE【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合

    注意事项

    本文(精品试题沪教版七年级数学第二学期第十四章三角形章节测试练习题(精选).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开