难点解析京改版八年级数学下册第十五章四边形章节测试试题(精选).docx
-
资源ID:28202103
资源大小:835.65KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析京改版八年级数学下册第十五章四边形章节测试试题(精选).docx
京改版八年级数学下册第十五章四边形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD2、如图,在中,ACB90°,AB10,CD是AB边上的中线,则CD的长是( )A20B10C5D23、菱形ABCD的周长是8cm,ABC60°,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm4、如图,A+B+C+D+E+F的度数为()A180°B360°C540°D不能确定5、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若10°,则EAF的度数为()A40°B45°C50°D55°6、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD7、下列图形中,可以看作是中心对称图形的是( )ABCD8、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个9、在方格纸中,选择标有序号中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD10、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或17第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_ 2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为_3、能使平行四边形ABCD为正方形的条件是_(填上一个符合题目要求的条件即可)4、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_5、如图,点A,B,C在O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _三、解答题(5小题,每小题10分,共计50分)1、在菱形ABCD中,ABC60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE若AB2,BE2,请直接写出APE的面积2、如图,四边形ABCD是平行四边形,且分别交对角线于点E、F,连接ED、BF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形3、如图所示,在边长为1的菱形ABCD中,DAB60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN1(1)证明:无论M,N怎样移动,BMN总是等边三角形;(2)求BMN面积的最小值4、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF5、如图,等腰ABC中,ABAC,BAC90°,BE平分ABC交AC于E,过C作CDBE于D,(1)如图1,求证:CDBE(2)如图2,过点A作AFBE,写出AF,BD,CD之间的数量关系并说明理由-参考答案-一、单选题1、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90°, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键2、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长【详解】解:在中,AB=10,CD是AB边上的中线故选:C【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半3、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60°,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法4、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键5、A【分析】可以设EAD,FAB,根据折叠可得DAFDAF,BAEBAE,用,表示DAF10°+,BAE10°+,根据四边形ABCD是矩形,利用DAB90°,列方程10°+10°+10°+90°,求出+30°即可求解【详解】解:设EAD,FAB,根据折叠性质可知:DAFDAF,BAEBAE,BAD10°,DAF10°+,BAE10°+,四边形ABCD是矩形DAB90°,10°+10°+10°+90°,+30°,EAFBAD+DAE+FAB,10°+,10°+30°,40°则EAF的度数为40°故选:A【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系6、B【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90°,B=30°,BAC=90°-30°=60°,AD平分BAC,DAB=BAC=30°,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键7、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心8、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合9、B【分析】利用中心对称图形的定义判断即可【详解】解:根据中心对称图形的定义可知,满足条件故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键10、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键二、填空题1、5cm或5.2cm【分析】当点P在BC上,AMBP,当点P在AB上,AMBP,当点P在CD上,如图,根据PB=AM,可证RtABMRtBCP(HL),可证BPAM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证RtABMRtBAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AMBP,当点P在AB上,AMBP,不合题意,舍去;当点P在CD上,如图,PB=AM四边形ABCD为正方形,AB=BC=AD=CD=8,在RtABM和RtBCP中,RtABMRtBCP(HL),MAB=PBC,MAB+AMB=90°,PBC+AMB=90°,BNM=180°-PBC-AMB=90°,BPAM,MC=2cm,BM=BC-MC=8-2=6cm,AM=,PN=BP-BN=AM-BN=10-4.8=5.2cm,当点P在AD上,如图,在RtABM和RtBAP中,RtABMRtBAP(HL),BM=AP,AMB=BPA,MAB=PBA,AN=BN,ADBC,PAN=NMB=APN,AN=PN=BN=MN,AM=BP=10cm,PN=cm,PN的长为5cm或5.2cm故答案为5cm或5.2cm【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键2、16【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长【详解】四边形ABCD是菱形,且对角线相交于点O点O是AC的中点E为DC的中点OE为CAD的中位线AD=2OE=2×2=4菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键3、AC=BD且ACBD(答案不唯一)【分析】根据正方形的判定定理,即可求解【详解】解:当AC=BD时,平行四边形ABCD为菱形,又由ACBD,可得菱形ABCD为正方形,所以当AC=BD且ACBD时,平行四边形ABCD为正方形故答案为:AC=BD且ACBD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键4、10【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90°, FEAD,AFE=B=A=90°,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键5、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可【详解】解:如图所示,连接OB,交AC于点D,四边形OABC为平行四边形,四边形OABC为菱形, ,为等边三角形,在中,设,则,即,解得:或(舍去),的长为:,故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键三、解答题1、(1)BPCE,CEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明BAPCAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明BAPCAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由BCE90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论【详解】解:(1)如图1,连接AC,延长CE交AD于点H,四边形ABCD是菱形,ABBC,ABC60°,ABC是等边三角形,ABAC,BAC60°;APE是等边三角形,APAE,PAE60°,BAPCAE60°PAC,BAPCAE(SAS),BPCE;四边形ABCD是菱形,ABPABC30°,ABPACE30°,ACB60°,BCE60°+30°90°,CEBC;故答案为:BPCE,CEBC;(2)(1)中的结论:BPCE,CEAD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,菱形ABCD,ABC60°,ABC和ACD都是等边三角形,ABAC,BAD120°,BAP120°+DAP,APE是等边三角形,APAE,PAE60°,CAE60°+60°+DAP120°+DAP,BAPCAE,ABPACE(SAS),BPCE,ACEABD30°,DCE30°,ADC60°,DCE+ADC90°,CHD90°,CEAD;(1)中的结论:BPCE,CEAD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EFAP于F,四边形ABCD是菱形,ACBD BD平分ABC,ABC60°,AB2,ABO30°,AOAB,OBAO3,BD6,由(2)知CEAD,ADBC,CEBC,BE2,BCAB2,CE8,由(2)知BPCE8,DP2,OP5,AP2,APE是等边三角形,SAEP×(2)27,如图4中,当点P在DB的延长线上时,同法可得AP2,SAEP×(2)231,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题2、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, ,BEF=DFE, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,SADF=SDEC=SABF=SBEC=13SABCD.【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.3、(1)见解析;(2)BMN面积的最小值为【分析】(1)连接BD,证明AMBDNB,则可得BM=BN,MBANBD,由菱形的性质易得MBN=60,从而可证得结论成立;(2)过点B作BEMN于点E【详解】(1)证明:如图所示,连接BD,在菱形ABCD中,DAB60°,ADBNDB60°,故ADB是等边三角形,ABBD,又AM+CN1,DN+CN1,AMDN,在AMB和DNB中,AMBDNB(SAS),BMBN,MBANBD,又MBA+DBM60°,NBD+DBM60°,即MBN60°,BMN是等边三角形;(2)过点B作BEMN于点E设BMBNMNx,则,故,当BMAD时,x最小,此时,BMN面积的最小值为【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等4、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键5、(1)证明见解析;(2)BD= CD+2AF,理由见解析【分析】(1)延长BA与CD的延长线交于点G,先证明ABEACG得到BE=CG,由BD是ABC的角平分线,得到GBD=CBD,即可证明BDGBDC得到CD=GD,则;(2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,则,再由BAC=90°,AB=AC,得到ABC=45°,根据BD平分ABC,即可推出AHF=ABH+BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF【详解】解:(1)如图所示,延长BA与CD的延长线交于点G,BAC=90°,CAG=90°,CDBE,EDC=GDB=BAE=90°,又AEB=DEC,ABE=DCE,在ABE和ACG中,ABEACG(ASA),BE=CG,BD是ABC的角平分线,GBD=CBD,在BDG和BDC中,BDGBDC(ASA),CD=GD,; (2)BD= CD+2AF,理由如下:如图所示,连接AD,取BE中点H,连接AH,由(1)得CD=GD,BAE和CAG都是直角三角形,H为BE中点,D为CG中点,ABH=BAH,BAC=90°,AB=AC,ABC=45°,又BD平分ABC,ABH=BAH=22.5°,AHF=ABH+BAH=45°,AFDH,HF=DF,AFH=90°,HAF=45°,AF=HF,DH=2AF,BD=BH+HD=BH+2AF=CD+2AF【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件