难点解析北师大版九年级数学下册第一章直角三角形的边角关系课时练习试卷(含答案解析).docx
-
资源ID:28202647
资源大小:502.21KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版九年级数学下册第一章直角三角形的边角关系课时练习试卷(含答案解析).docx
九年级数学下册第一章直角三角形的边角关系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在直角ABC中,AC2,则tanA的值为( )ABCD2、在RtABC中,C90°,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB3、的值为( )A1B2CD4、式子sin45°+sin60°2tan45°的值是()A22BC2D25、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m6、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52°米C米D米7、的相反数是( )ABCD8、在中,则的值是( )ABCD9、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米若栏杆的旋转角,则栏杆A端升高的高度为( )A米B米C米D米10、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、如图,为了测量河宽(假设河的两岸平行),在河的彼岸选择一点,点看点仰角为,点看点仰角为,若,则河宽为_(结果保留根号)3、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMNNC;S四边形GBEM4、如图,已知菱形ABCD的边长为2,BAD60°,若DEAB,垂足为点E,则DE的长为_5、如图,在网格中,小正方形的边长均为1,点都在格点上,则的正弦值是_三、解答题(5小题,每小题10分,共计50分)1、在ABC中,AD是BC边上的高,C=45°,AD=1,求BC的长2、解答:(1)12021+|2|+2cos30°+(2tan60°)0(2)先化简,再求值:()×,其中a满足方程x2+5x+603、如图,在中,(1)尺规作图:作的垂直平分线交于点(保留痕迹,不写作法)(2)在(1)的作图下,试求的值(结果保留根号)4、如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方求红蓝双方最初相距多远(结果不取近似值)5、计算:-参考答案-一、单选题1、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中2、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键3、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键4、B【分析】先分别求解特殊角的三角函数值,再代入运算式进行计算即可.【详解】解:sin45°+sin60°2tan45° 故选B【点睛】本题考查的是特殊角的三角函数值的混合运算,正确的记忆特殊角的三角函数值是解本题的关键.5、C【分析】根据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键6、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义7、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是解题的关键8、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义9、C【分析】过点A作ACAB于点C,根据锐角三角函数的定义即可求出答案【详解】解:过点A作ACAB于点C,由题意可知:AO=AO=5,sin=,AC=5sin,故选:C【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型10、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边二、填空题1、【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键2、【分析】在RtACB中,利用三角函数求出 ,在RtADB中,利用三角函数,根据得出,求出AB即可【详解】解:在RtACB中,tanACB=,在RtADB中,tanADB=,CD=BC-DC=m,解得m故答案为【点睛】本题考查解直角三角形,掌握解直角三角形的方法,与特殊三角函数值是解题关键3、【分析】证明,由可得;结合,证明;证明,得;求出和的面积,进而由它们的差可得【详解】解:,故正确,由可得:,故正确,故不正确,故正确,故答案是:【点睛】本题考查了正方形性质,全等三角形判定和性质,相似三角形判定和性质等知识,解题的关键是层层递进,下一问要有意识应用前面解析4、【分析】由已知的,根据垂直的性质得到,即三角形ADE为直角三角形,在此直角三角形中,根据正弦函数得到,将AD的值代入,利用特殊角的三角函数值,化简即可求出DE【详解】解:,在中,则故答案为:【点睛】题目主要考查利用锐角三角函数解三角形及特殊角的三角函数值,菱形的性质等,深刻理解锐角三角函数的性质是解题关键5、#【分析】根据题意过点B作BDAC于点D,过点C作CEAB于点E,则BD=AD=3,CD=1,利用勾股定理可求出AB,BC的长,利用面积法可求出CE的长,再利用正弦的定义即可求出ABC的正弦值【详解】解:过点B作BDAC于点D,过点C作CEAB于点E,则BD=AD=3,CD=1,如图所示,ACBD=ABCE,即×2×3=×3CE,CE=,故答案为:【点睛】本题考查解直角三角形和勾股定理以及三角形的面积,利用面积法及勾股定理求出CE,BC的长度是解题的关键三、解答题1、【分析】先由三角形的高的定义得出ADB=ADC=90°,再解RtADC,得出DC=1;解RtADB,得出AB=3,根据勾股定理求出BD= ,然后根据BC=BD+DC即可求解【详解】解:,即, DC=1,即,AB=3在中,BC=BD+DC=【点睛】本题考查了三角函数正切和正弦的应用,做题的关键是求出BD和DC的长2、(1)2(2),【分析】(1)先计算乘方、去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再解方程求出a的值,结合分式有意义的条件确定a的值,继而代入计算即可(1)解: ;(2)解:;,解得或,分式要有意义,a-20a2+2a0,且,a满足方程x2+5x+60,原式【点睛】本题主要考查了特殊角三角函数值,零指数幂,绝对值,解一元二次方程,分式的化简求值,分式有意义的条件,熟知相关知识是解题的关键3、(1)见解析;(2)【分析】(1)作线段的垂直平分线即可;(2)由垂直平分线的性质求出,设,在三角形中利用三角函数即可求解【详解】(1)作图如下,(2)根据垂直平分线的性质知,在三角形中,设,在三角形中,【点睛】本题考查的是作图基本作图、线段垂直平分线的性质、三角函数,熟知线段垂直平分线的作法是解答此题的关键4、红蓝双方最初相距()米【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90°,红蓝双方相距AB=DF+CE在RtBCE中,根据锐角三角函数的定义求出CE的长,同理,求出DF的长,进而可得出结论【详解】解:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90°,红蓝双方相距AB=DF+CE在RtBCE中,BC=1000米,EBC=60°,CE=BCsin60°=1000×=500米在RtCDF中,F=90°,CD=1000米,DCF=45°,DF=CDsin45°=1000×=500米,AB=DF+CE=(500+500)米答:红蓝双方最初相距()米【点睛】本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键5、【分析】根据二次根式的性质、零指数幂的性质、45°的余弦值和绝对值的性质计算即可【详解】解: =【点睛】本题考查的是实数的混合运算,掌握二次根式的性质、零指数幂的性质、45°的余弦值和绝对值的性质是解题关键