难点详解北师大版九年级数学下册第一章直角三角形的边角关系定向测试试题(含详细解析).docx
-
资源ID:28202668
资源大小:899.35KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版九年级数学下册第一章直角三角形的边角关系定向测试试题(含详细解析).docx
九年级数学下册第一章直角三角形的边角关系定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,ACB90°,AC1,BC2,则sinB的值为()ABCD2、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD3、如图,在正方形中、是的中点,是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个4、如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为如果在坡度为的山坡上种植树,也要求株距为,那么相邻两树间的坡面距离约为( )ABCD5、如图,滑雪场有一坡角为20°的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20°CD100sin20°6、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD7、比较下图长方形内阴影部分面积的大小,甲( )乙ABCD无法确定8、已知RtABC中,则的值为( )ABCD9、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D510、在ABC中,C90°,BC2,sinA,则边AC的长是()AB3CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)2、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _3、如图,已知菱形ABCD的边长为2,BAD60°,若DEAB,垂足为点E,则DE的长为_4、如图, 在 中, 是斜边 上的中线, 点 是直线 左侧一点, 联结 , 若 , 则 的值为_5、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMNNC;S四边形GBEM三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A(-m,m)(m>0)在反比例函数(x<0)的图象上,点C在反比例函数(x>0)的图象上,矩形ABCD与坐标轴的交点分别为H,E,F,G,ABy轴连接AE,AF,分别交坐标轴于点M,N,连接MN(1)猜想:EAF的度数是定值吗?若是,请求出度数;若不是,请说明理由;(2)若M为OH的中点,求tanANM2、如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知,当AB,BC转动到,时,求点C到AE的距离(结果保留小数点后一位,参考数据:,)3、计算:4、如图,已知矩形ABCD,点P从B出发,以1/s的速度沿边BC运动,(点P不与点C重合),连接AP,作,交矩形ABCD的边于N,设点P的运动时间为(1)时,则_;(2)若,求的值;(3)当N在CD边上时,且,求的面积;(4)当N在CD边上时,直接写出的取值范围5、计算:-参考答案-一、单选题1、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90°,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义2、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键3、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90°,ABBCCD,AEEF,AEFB90°,BAEAEB90°,AEBFEC90°,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30°,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90°,ABEAEF,故正确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键4、A【分析】根据坡度为0.5,即可求出相邻两棵树的垂直距离为2m,根据勾股定理即可求出相邻两树间的坡面距离【详解】解:坡度i= ,相邻两棵树的垂直距离为4×0.5=2m,相邻两树间的坡面距离约为故选:A【点睛】本题考查了坡度的定义,解直角三角形的应用,熟知坡度的定义“坡度=垂直距离:水平距离”是解题关键5、B【分析】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20°,AC为100米,故选:B【点睛】此题考查了解三角形的实际应用,解题的关键是熟练掌握锐角三角函数的表示方法6、D【分析】根据直角三角形斜边中线等于斜边一半求出AB,再根据三角函数的意义,可求出答案【详解】解:在ABC中,ACB90°,点D为AB边的中点,ADBDCDAB,,又CD3,AB6,故选:D【点睛】本题考查直角三角形的性质和三角函数,理解直角三角形的边角关系是得出正确答案的前提7、C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积故选:C【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键8、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90°,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边9、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=1×5=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形10、A【分析】先根据BC2,sinA求出AB的长度,再利用勾股定理即可求解【详解】解:sinA,BC2,AB3,AC,故选:A【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键二、填空题1、【分析】由“ASA”可证ANODFO,可得ON=OF,由等腰三角形的性质可求AFO=45°;由外角的性质可求NAO=AQO由“AAS”可证OKGDFG,可得GO=DG;通过证明AHNOHA,可得,进而可得结论DP2=NHOH【详解】四边形ABCD是正方形,AO=DO=CO=BO,ACBD,AOD=NOF=90°,AON=DOF,OAD+ADO=90°=OAF+DAF+ADO,DFAE,DAF+ADF=90°=DAF+ADO+ODF,OAF=ODF,ANODFO (ASA),ON=OF,AFO=45°,故正确;如图,过点O作OKAE于K,CE=2DE,AD=3DE,tanDAE=,AF=3DF,ANODFO,AN=DF,NF=2DF,ON=OF,NOF=90°,OK=KN=KF=FN,DF=OK,又OGK=DGF,OKG=DFG=90°,OKGDFG (AAS),GO=DG,故正确;DAO=ODC=45°,OA=OD,AOH=DOP,AOHODOP (ASA),AH=DP,ANH=FNO=45°=HAO,AHN=AHO,AHNOHA,AH2=HOHN,DP2=NHOH,故正确;NAO+AON=ANQ=45°,AQO+AON=BAO=45°,NAO=AQO,即故错误综上,正确的是故答案为:【点睛】本题是四边形综合题,查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键2、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系3、【分析】由已知的,根据垂直的性质得到,即三角形ADE为直角三角形,在此直角三角形中,根据正弦函数得到,将AD的值代入,利用特殊角的三角函数值,化简即可求出DE【详解】解:,在中,则故答案为:【点睛】题目主要考查利用锐角三角函数解三角形及特殊角的三角函数值,菱形的性质等,深刻理解锐角三角函数的性质是解题关键4、【分析】先证明,则,进而证明,据求得相似比,根据面积比等于相似比的平方即可求解【详解】解:是斜边 上的中线, 即又又又设,则故答案为:【点睛】本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明是解题的关键5、【分析】证明,由可得;结合,证明;证明,得;求出和的面积,进而由它们的差可得【详解】解:,故正确,由可得:,故正确,故不正确,故正确,故答案是:【点睛】本题考查了正方形性质,全等三角形判定和性质,相似三角形判定和性质等知识,解题的关键是层层递进,下一问要有意识应用前面解析三、解答题1、(1)是定值,EAF=45°;(2)3【分析】(1)连接AO,由点的坐标可得四边形AHOG为正方形,然后利用勾股定理得出,根据点C所在的反比例函数解析式可得:,利用等量代换得出:,根据相似三角形的判定和性质可得:,结合图形,由各角之间的数量关系即可得出结果;(2)OH的延长线上取点P,使得,连接AP,用正方形半角模型得,设正方形AHOG的边长为2a,即可得出各边长,然后利用勾股定理得出,根据正切函数的性质求解即可【详解】解:(1)证明:如图,连接AO,点,四边形AHOG为正方形,根据点C所在的反比例函数解析式可得:,又,为定值;(2)解:如图,在OH的延长线上取点P,使得,连接AP,利用正方形半角模型即:将AGN旋转到APH位置,得,设正方形AHOG的边长为2a,则,设,则,由勾股定理得,即:,得,【点睛】题目主要考查反比例函数图象与图形的结合问题,包括正方形的判定和性质,相似三角形的判定和性质,图形的旋转,正切函数等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键2、6.3cm【分析】如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,即CD=FG,然后分别解直角ABG和直角BCF求出BG和BF的长,最后根据线段的和差即可解答【详解】解:如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,CD=FG,在直角ABG中,(cm),ABG=30°,CBF=20°,BCF=70°,在直角BCF中,BCF=70°,(cm),CD=FG=(cm),即点到的距离为6.3cm【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形、灵活运用解直角三角形解决实际问题成为解答本题的关键3、【分析】先进行绝对值的化简,代入特殊角的三角函数值运算,然后合并【详解】解:原式=,=,=【点睛】本题考查了绝对值的性质,特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值4、(1);(2);(3);(4),【分析】(1)由矩形可推出,由对应边成比例即可求出CN(2)由垂直性质可得出PE/BD,进而求得,由对应边成比例即可列出关于t的一元一次方程(3)由(1)可得,又由可知,故可求得此时t=1,即可求得PC、NC的值,由三角形面积公式即可求得的面积(4)由(3)可知当t=1时,N点与D点重合,又由矩形对称性可知,当PC=6-t=1时,即t=5时,N点又与D点重合,则可知当,时N在CD边上【详解】(1)当时,BP=,PC=BC- BP=6-=四边形ABCD为矩形ABP=BCD=90°BAP+BPA=90°又BPA+APN+NPC=180°BPA +NPC=90°BAP=NPC即(2)如图所示,连接BD,AP与BD交点标为点M,设BP为t,则PC=6-t,若则AMD=90°则AMD=APNPE/BDDBC=NPC,BDC=PNC由(1)问知即(3)由(1)问可知解得此时t=1, 则BP=1,PC=5,由(1)问知,且N点与D点重合(4)如图所示,由(3)问可知,当t=1时,N点与D点重合,则时N在CD边上由矩形对称性可知,当PC=6-t=1时,N点又与D点重合且向C点移动故当t=5时,N点与D点重合,则时N在CD边上综上所述当,时N在CD边上【点睛】本题考查了矩形上的动点问题、相似三角形的判断及性质、解直角三角形,求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式,确定运动变化过程中的数量关系,图形位置关系,分类画出符合题设条件的图形进行讨论,就能找到解决的途径,有效避免思维混乱5、【分析】根据负整数指数幂,特殊角的三角函数值,零指数幂的运算法则求解即可【详解】解:【点睛】此题考查了负整数指数幂,特殊角的三角函数值,零指数幂运算,解题的关键是熟练掌握负整数指数幂,特殊角的三角函数值,零指数幂的运算法则