最新人教版九年级数学下册第二十六章-反比例函数同步测评试卷(精选).docx
-
资源ID:28203355
资源大小:738.18KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最新人教版九年级数学下册第二十六章-反比例函数同步测评试卷(精选).docx
人教版九年级数学下册第二十六章-反比例函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P,点Q都在反比例函数y的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,OAQ的面积为S2,若S1+S23,则k的值为()A2B1C1D22、已知正比例函数ykx的图象与反比例函数y的图象交于A,B两点,若点A的坐标为(2,3),则关于x的方程kx的两个实数根分别为()Ax13,x23Bx13,x22Cx12,x23Dx12,x223、已知反比例函数(a为常数)图象上三个点的坐标分别是,其中,则的大小关系的是( )ABCD4、已知点,都在反比例函数的图象上,那么、的大小关系是( )ABCD5、如图,点是反比例函数图象上一点,过点分别向坐标轴作垂线,垂足为,反比例函数的图象经过的中点,与,分别相交于点,连接并延长交轴于点,连接则的面积为( )A4B1C2D36、如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF若点E为AC的中点,AEF的面积为2,则k的值为( )A2B4C6D87、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S28、一次函数的图象与x轴交于点B,与反比例函数的图象交于点,且的面积为1,则m的值是( )A1B2C3D49、如图,取一根长100cm的匀质木杆,用细绳绑在木杆的中点O将其吊起来在中点O的左侧距离中点25cm处挂一个重9.8N的物体,在中点O右侧用一个弹簧秤向下拉,使木杆处于水平状态如果把弹簧秤与中点O的距离L(单位:cm)记作x,弹餐秤的示数F(单位:N记作y,下表中有几对数值满足y与x的函数关系式()x/cm5103540y/N4924.57.16.125A1对B2对C3对D4对10、在平面直角坐标系中,点,分别在三个不同的象限,若反比例函数的图像经过其中两点,则m的值为( )A2BC2或3D或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y(m+1)是y关于x的反比例函数,则m_2、如图,正方形ABOC的边长为2,双曲线y的一个分支经过点A,若点(1,y1),(2,y2),(4,y3)都在该双曲线上,则y1,y2,y3的大小关系是_(用“”号连接)3、如图,点P在反比例函数y(x0)的图象上,且横坐标为2若将点P先向右平移2个单位,再向上平移2个单位后所得图象为点P则经过点P的反比例函数图象的关系式是 _4、如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=8,则k的值为_ 5、已知点、在反比例函数的图象上,则、从小到大排列是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知点是反比例函数的图象上一点,直线与反比例的图象在第四象限的交点为点B(1)求直线AB的解析式;(2)直接写出不等式的x的取值范围;(3)动点在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标2、如图,一次函数yx3的图象与反比例函数y(k0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C(1)求反比例函数的解析式和另一个交点B的坐标;(2)当x3时,请直接写出x的取值范围;(3)若点P为x轴上一动点,求PAPB的最小值3、如图:一次函数的图象与反比例函数的图象交于和点(1)求点的坐标;(2)根据图象回答,当在什么范围时,一次函数的值大于反比例函数的值4、如图,直线yx+4与双曲线y(x0)交于A(1,3),B(3,n),与x,y轴分别交于P,C(1)求k的值;(2)求OAB的面积;(3)观察图象指出,当x取何值时x+45、某面粉车间安装了粉尘检测仪,工人加工4 h后粉尘检测仪开始报警,工人立即停止加工并对车间进行自然通风除尘如图,线段DE表示工人加工时粉尘检测仪显示的数据与时间x(h)之间的函数关系(),反比例函数对应曲线EF,表示通风除尘期间粉尘检测仪显示的数据与时间x(h)之间的函数关系根据图像解答下列问题:(1)求粉尘检测仪在工人加工前显示的数据(2)当车间内粉尘指数在50100之间时,室内空气质量为良,求该车间空气质量保持良的时间-参考答案-一、单选题1、D【分析】根据反比例函数的几何意义得到,如何代入解方程,再根据图象在二、四象限确定的值【详解】解:由题意得,则,解得,图象在二、四象,故选:D【点睛】本题考查了反比例函数的几何意义,解题的关键是掌握在反比例函数图象中任取一点,过这一个点向轴和轴分别作垂线,与坐标轴围成的矩形的面积是定值在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变2、D【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论【详解】解:正比例函数图象关于原点对称,反比例函数图象关于原点对称,两函数的交点A、B关于原点对称,点A的坐标为(2,3),点B的坐标为(2,3)关于x的方程kx的两个实数根为x12,x22故选:D【点睛】本题主要考查了一次函数与反比例函数的交点问题,利用数形结合思想解答是解题的关键3、C【分析】分析反比例函数在各个象限内的增减性,然后判断三个点即可【详解】解:,反比例函数(a为常数)图象在二、四象限,且在每个象限内随增大而增大,故选:C【点睛】本题考查了根据反比例函数判断反比例函数的增减性,根据增减性判断函数值大小,熟练掌握反比例函数的性质是解本题的关键4、A【分析】根据题意先判断出m2+1是正数,再根据反比例函数图象的性质,比例系数k0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可得出答案【详解】解:m20,m2+11,是正数,反比例函数的图象位于第一三象限,且在每一个象限内y随x的增大而减小,(-2,y1),(-1,y2),(1,y3)都在反比例函数图象上,0y2y1,y30,y2y1y3故选:A【点睛】本题考查了反比例函数图象的性质,注意掌握对于反比例函数(k0),k0,反比例函数图象在一、三象限; k0,反比例函数图象在第二、四象限内,本题先判断出比例系数m2+1是正数是解题的关键5、D【分析】先求出,再由的面积的面积,即可求解【详解】解:设点,则,是的中点,点,则,连接,如图所示:轴,根据同底等高,三角形面积相等及反比例系数的绝对值的几何意义为三角形的面积,的面积的面积,故答案为:【点睛】本题考查的是反比例函数的性质、面积的计算等知识,解题的关键是熟练掌握反比例函数的性质6、C【分析】设 ,根据矩形的性质,可得 ,再由点E为AC的中点,可得点E的纵坐标为 ,从而得到 ,进而得到 ,再由AEF的面积为2,可得到ACF的面积为4,即可求解【详解】解:设 ,四边形ABCD为矩形, ,点E为AC的中点,点E为BD的中点,B在x轴的正半轴上,点E的纵坐标为 , ,点E为AC的中点, , ,AEF的面积为2,AE=CE,ACF的面积为4,即 ,解得: 故选:C【点睛】本题主要考查了反比例函数的图象和性质,几何意义,矩形的性质,利用数形结合思想解答是解题的关键7、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键8、B【分析】先求出B的坐标,结合的面积为1和,列出方程,再根据在一次函数图像上,得到另一个方程,进而即可求解【详解】一次函数的图象与x轴交于点B,B(n,0),的面积为1,一次函数的图象与反比例函数的图象交于点,或,解得:n2或n1或无解,m2或1(负值舍去),故选B【点睛】本题考查了一次函数与反比例数综合,根据题意建立方程求解是解题的关键9、C【分析】由题意得,yx25×9.8245,即可得出结论;【详解】解:由题意得,yx25×9.8245,y;当x=5时,y=49;当x=10时,y=24.5;当x=35时,y=7;当x=40时,y=6.125;有三对符合题意,故答案选:C【点睛】本题考查了反比例函数的应用,解答本题的关键是理解题意,得出x与y的积为定值,从而得出函数关系式10、B【分析】利用点过反比例函数图象,将点坐标代入求出反比例解析式,再求出m即可【详解】解:根据反比例函数图像性质,若k>0,则反比例函数图象过第一、三象限;若k<0,则反比例函数图象过第二、四象限若点A(1,4)在反比例函数图象上,则,解得k=4,反比例函数图象过第一、三象限故点C需在第三象限,与点C横坐标为2矛盾,若点B(-2,3)在反比例函数图象上,则,解得k=-6,反比例函数图象过第二、四象限故点C需在第四象限,将点C(2,m)代入反比例函数解析式得,符合题意,综上,m的值为-3故选B【点睛】本题考查了反比例函数图像性质,能熟练掌握反比例函数k值影响图象所在象限是解题的关键二、填空题1、2【解析】【分析】根据反比例函数的一般形式得到且m+10,由此来求m的值即可【详解】解:函数y(m+1)是y关于x的反比例函数,且m+10,解得:;故答案为:2【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是(k0)2、【解析】【分析】先根据正方形的性质可得点的坐标,再利用待定系数法可得反比例函数的解析式,然后分别求出的值即可得【详解】解:正方形的边长为2,将点代入得:,则反比例函数的解析式,将点代入得:,将点代入得:,将点代入得:,则,故答案为:【点睛】本题考查了比较反比例函数的函数值,熟练掌握待定系数法是解题关键3、y【解析】【分析】先将点横坐标代入解析式求出点纵坐标,再根据平移规律求出的坐标,利用待定系数法即可求出经过点的反比例函数图象的解析式【详解】解:点在反比例函数的图象上,且横坐标为2,点的纵坐标为,点坐标为;将点先向右平移2个单位,再向上平移2个单位后所得图象为点设经过点的反比例函数图象的解析式是,把点代入得:,反比例函数图象的解析式是故答案为:【点睛】本题考查了用待定系数法确定反比例函数的解析式,反比例函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法4、【解析】【分析】作轴于,得出,在中,由勾股定理得出方程,解方程求出,得出,即可求出的值【详解】解:过点作轴,垂足为点,设,把代入中,得,由勾股定理,得,即,解得(负值舍去)把代入,得,故答案是:【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法,解题的关键是求出点的坐标是解决问题的关键5、【解析】【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答【详解】解:k0,此函数图象在一、三象限,在各象限内函数值随x的增大而减小,1023,点在第三象限,点、在第一象限,a0,bc故答案为:【点睛】此题考查的是反比例函数图象上点的坐标特点,熟练掌握反比例函数的性质是解题的关键三、解答题1、(1);(2)或 (3)【分析】(1)根据反比例函数的性质,得点;根据分式方程和一元二次方程的性质计算,得点;根据一次函数和二元一次方程组的性质计算,即可得到答案;(2)结合题意,根据反比例函数和一次函数图像的性质分析,即可得到答案;(3)连接AB并延长,交x轴于点M,根据一次函数和坐标轴交点的性质,计算得;根据三角形三边关系的性质,得,当点P和点M重合时,此时线段PA与线段PB之差达到最大,即可完成求解【详解】(1)点是反比例函数的图象上一点点直线与反比例的图象在第四象限的交点为点B 或经检验,或是的解;当时,点当时,点设直线AB的解析式为: 直线AB的解析式为:;(2)根据(1)的结论,得:点,点直线与反比例的图象交点为点B和点D不等式的x的取值范围为:或;(3)连接AB并延长,交x轴于点M,如下图:直线AB的解析式为:;当时, 中, 当点P和点M重合时,此时线段PA与线段PB之差达到最大点【点睛】本题考查了一次函数、反比例函数、二元一次方程组、分式方程、一元二次方程、三角形的知识;解题的关键是熟练掌握一次函数、反比例函数、分式方程、一元二次方程、三角形三边关系的性质,从而完成求解2、(1);(,);(2)或;(3)【分析】(1)将点(1,)代入一次函数中,求出的值,然后把点坐标代入反比例函数中,求出反比例函数解析式,再与一次函数联立解方程即可求出点坐标(2)利用函数图像,图像在上面的函数值大于下面的函数值,即可解答(3)作点关于轴的对称点,连接,即可确定点的位置,则的最小值等于的长,再利用两点间距离公式即可求解【详解】(1)一次函数与反比例函数交于点(1,)和点点的坐标为(1,),代入中反比例函数的解析式为:解得:,将代入中,解得的坐标为(,)(2)一次函数与反比例函数交于点(1,)和点(,),结合图像可得:的解集为或(3)如图:作点关于轴的对称点,连接,则与轴的点即为点的位置,则此时的和最小,即线段的长点坐标为(,),点的坐标为(,)点的坐标为(1,),【点睛】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求函数解析式,以及最短路径问题,解题关键是熟练利用待定系数法求函数解析式,利用图像求不等式的解集,以及利用轴对称求最短路径3、(1);(2)或【分析】(1)先根据点的坐标可得反比例函数的解析式,再将点的坐标代入计算即可得;(2)结合点的坐标,根据一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方即可得【详解】解:(1)将点代入得:,则反比例函数的解析式为,将点代入得:,则点的坐标为;(2)一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,或【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键4、(1)k=3;(2)4;(3)当1x3时,-x+4【分析】(1)把A点的坐标代入反例函数解析式即可求出k值;(2)由(1)得反比例函数解析式,进而得出B的坐标,把A、B的坐标代入一次函数解析式,即可求出一次函数解析式;由直线解析式求得D(0,4),根据AOB的面积=BOD的面积-AOD的面积求得AOB的面积;(3)结合图像直接得出x的范围【详解】解:(1)将点A(1,3)代入y(x0)得:3=k,解得k=3,(2)由(1)得:反比例函数的表达式为:y,将点B(3,n)代入y得:n=1,点B(3,1),C(0,4),如图,连接OA,OB,AOB的面积=BOC的面积-AOC的面积=;(3)当-x+4时,即y=-x+4的图象在y=上方,由图象可知,此时1x3,即当1x3时,-x+4【点睛】本题主要考查了反比例函数和一次函数的交点问题,用待定系数法求反比例函数和一次函数的解析式的应用,主要考查学生的计算能力5、(1);(2)h【分析】(1)当时,设y与x之间的函数关系式为,求出,令,求得,由此即可得到答案;(2)先求出E点的坐标,从而求出反比例函数的解析式,然后分别把,代入反比例函数和一次函数中进行求解即可【详解】解:(1)当时,设y与x之间的函数关系式为由题意得解得,当时,粉尘检测仪在工人加工前显示的数据为;(2)将代入,得,点点E在反比例函数的图像上,即反比例函数的表达式为,把,分别代入当时,;当时,把,分别代入,当时,;当时,该车间空气质量保持良的时间为h答:该车间空气质量保持良的时间为h【点睛】本题主要考查了一次函数和反比例函数的实际应用,解题的关键在于能够正确读懂函数图像