难点详解沪科版九年级数学下册第25章投影与视图专项测评试题(名师精选).docx
-
资源ID:28203669
资源大小:470.08KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解沪科版九年级数学下册第25章投影与视图专项测评试题(名师精选).docx
沪科版九年级数学下册第25章投影与视图专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的俯视图是( )ABCD2、下列几何体的主视图和俯视图完全相同的是( )ABCD3、下列几何体中,其三视图完全相同的是( )ABCD4、如图所示的几何体,它的左视图是( )ABCD5、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )ABCD6、如图所示的几何体,它的左视图是()ABCD7、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2mn()A10B11C12D138、中国有悠久的金石文化,印信是金石文化的代表之一南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体从正面看该几何体得到的平面图形是( )ABCD9、分别从正面、左面和上面三个方向看下面哪个几何体,能得到右图所示的平面图形( )ABCD10、如图为某几何体的三视图,则该几何体是( )A圆锥B圆柱C三棱柱D四棱柱第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三视图中的三个视图完全相同的几何体可能是_(列举出两种即可)2、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为_个3、如图所给出的几何体的三视图,可以确定几何体中小正方体的数目为_4、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面左面看到的形状图,若该几何体所用小立方块的个数为,则的所有可能值有_种5、一块直角三角形板,测得边的中心投影长为,则长为_三、解答题(5小题,每小题10分,共计50分)1、如图是由六个棱长为1 cm的小正方体组成的几何体(1)该几何体的表面积是(含下底面) cm2;(2)分别画出该立体图形的三视图2、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉 个立方块3、如图是由块积木搭成的几何体,这几块积木都是相同的正方体请画出从正面、左面、上面看到的这个几何体的形状图4、如图是由7个棱长为1的小正方体搭成的几何体(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为 (包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还可以放 个相同的小正方体5、已知下图为一几何体从三个方向看到的形状图;(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积(结果保留)-参考答案-一、单选题1、D【分析】根据从上面看得到的图形是俯视图,可得答案【详解】从上面看得到的图形是故选D【点睛】本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键2、D【分析】根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可【详解】解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;D、圆的主视图和俯视图都为圆,故D选项符合题意;故选D【点睛】本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图3、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体4、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可【详解】解:如图所示,几何体的左视图是:故选:D【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键5、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.6、C【分析】根据几何体的左面是一个圆环即可得左视图【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线故选:C【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键7、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,m4+3+29,n4+2+17,2mn2×9711故选B【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数8、D【分析】找到从正面看所得到的图形即可【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中9、D【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱【详解】解:主视图和左视图都是长方形,此几何体为柱体,俯视图是一个三角形,此几何体为三棱柱故选:D【点睛】本题主要考查了由三视图判断几何体,解题的关键是熟练掌握由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状10、C【分析】根据三视图判断该几何体即可【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱故选:C【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型二、填空题1、正方体,球体【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点2、5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数【详解】解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体故答案为:5【点睛】本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识3、9或10或11【分析】从俯视图看出底层小正方体的位置,两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,分5种情况可取定小正方体的个数【详解】解:从俯视图可以看出分简单组合体两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是1+2+2+3+1=9个;如图简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是1+2+2+3+2=10个;如图简单组合体可以是第一排中间列两层2个小正方体,右边列一层1个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+1+2+3+2=10个;如图简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是2+2+2+3+1=10个;如图简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+2+2+3+2=11个;如图所以搭成这个几何体所用的小立方块的个数为9或10或11,故答案为:9或10或11【点睛】本题考查根据组合体的三视图确定小正方体的个数,掌握三视图的特征,结合图形分类讨论解决问题是解题关键4、9【分析】由主视图和左视图,判断最少和最多的正方体的个数即可解决问题【详解】解:由主视图和左视图可确定所需正方体个数最少和最多时俯视图为:则组成这个几何体的小正方体最少有6个,最多有14个,则n可能的值为6,7,8,9,10,11,12,13,14,故答案为:9【点睛】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少和最多的俯视图是关键5、【分析】由题意易得ABC,根据相似比求解即可【详解】解:,24,即,故答案为:【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用,解题的关键是利用中心投影的特点可知这两组三角形相似,利用其相似比作为相等关系求出所需要的线段三、解答题1、(1)24;(2)见解析【分析】(1)根据三视图可求出几何体的表面积;(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1据此可画出图形【详解】解:(1)该几何体的表面积是:4×25×23×224(cm2),故答案为: 24;(2)如图所示:【点睛】本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法2、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”3、见解析【分析】从正面看从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右2列正方形的个数依次为2,1;依此画出图形即可【详解】解:如图所示【点睛】本题考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形4、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡住的面积即可;(3)根据俯视图和左视图的特点即可求解【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(644)×2230,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键5、(1)圆柱体;(2)见解析;(3)【分析】(1)根据三视图的特征即可得出几何体;(2)根据圆柱体的特征,侧面展开为一个长方形,底面为两个圆,即可画出;(3)根据三视图可得:展开图中圆的直径为8,长方形的长为16,根据圆柱表面积的计算方法即可求得结果【详解】解:(1)根据题目中已知的三视图符合圆柱体的三视图特征,故这个几何体为圆柱;(2)表面展开图如图所示:(3)展开图圆的周长为:;展开图圆的面积为:;这个几何体的表面积为:,这个几何体的表面积为【点睛】题目主要考查三视图、几何体的侧面展开图及几何体的表面积计算方法,理解、看懂三视图是解题关键