难点解析京改版八年级数学下册第十六章一元二次方程同步练习试题(无超纲).docx
-
资源ID:28204376
资源大小:265.58KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析京改版八年级数学下册第十六章一元二次方程同步练习试题(无超纲).docx
京改版八年级数学下册第十六章一元二次方程同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x24x30时,配方后的方程为( )A(x2)21B(x2)21C(x2)27D(x2)272、若x1是关于x的一元二次方程ax2+bx20(a0)的一个根,则20212a+2b的值等于()A2015B2017C2019D20223、不解方程,判别方程的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定4、已知三角形的两边长是4和6,第三边的长是方程(x3)24的根,则此三角形的周长为()A17B11C15D11或155、已知方程的两根分别为m、n,则的值为( )A1BC2021D6、若方程的一个根为,则的值是( )A7BC4D7、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式根据“降次法”,已知:,且,则的值为( )ABCD8、一元二次方程的根的情况是( )A没有实数根B只有一个实数根C有两个相等的实数根D有两个不相等的实数根9、已知关于x的一元二次方程:x22xm0有两个不相等的实数根x1,x2,则( )Ax1x20Bx1x20Cx1x21Dx1x2110、下列一元二次方程中有两个相等实数根的是()Ax280Bx24x+40C2x2+30Dx22x10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x方程的一个根是1,则m的值等于_2、若为整数,关于的一元二次方程有实数根,则整数的最大值为_3、已知的算术平方根为a,则关于x的方程的根为_4、如图,一块长5m、宽4m的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的设配色条纹的宽度为xm,根据题意,列方程为 _5、若关于x的方程ax2+bx+c0(a0)满足ab+c0,称此方程为“月亮”方程,已知方程a2x21999ax+10(a0)是“月亮”方程,求a2+1999a+的值为 _三、解答题(5小题,每小题10分,共计50分)1、某公司自主研发一款健康的产品燕窝饮品,主要成分是水果和燕窝经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯若每杯每降低1元,就会多售出3杯已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%若每天的毛利润可达到600元(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额2、已知函数y1x1和y2x23xc(c为常数).(1)若两个函数图像只有一个公共点,求c的值;(2)点A在函数y1的图像上,点B在函数y2的图像上,A,B两点的横坐标都为m若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围3、(1)计算:(2)解方程:4、已知关于x的一元二次方程有两个实数根,(1)若,求k的值(2)若,求k的取值范围5、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?(2)为增加销量,该商家第二周决定将乙商品的售价下调,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了,甲商品的销量增加了a,最终第二周的销售额比第一周的销售额增加了,求a的值-参考答案-一、单选题1、D【分析】根据配方法转化为的形式,问题得解【详解】解:x24x30,移项得,配方得,故选:D【点睛】本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键2、B【分析】根据一元二次方程根的定义将代入方程ax2+bx20可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解【详解】解:将代入方程ax2+bx20可得,即20212a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键3、A【分析】利用根的判别式进行求解并判断即可【详解】解:原方程中,原方程有两个不相等的实数根故选:A【点睛】熟练掌握根的判别式是解答此题的关键,当0有两不相等实数根,当=0有两相等实数根,当0没有实数根4、C【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长【详解】解:(x3)24,x3±2,解得x15,x21若x5,则三角形的三边分别为4,5,6,其周长为4+5+615;若x1时,6421,不能构成三角形,5、B【分析】由题意得mn1,m22021m+10,将代数式变形后再代入求解即可【详解】方程x22021x+10的两根分别为m,n,mn1,m22021m+10,m22021m1,m21,故选:B【点睛】本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x2,熟练掌握代数式的求值技巧是解题的关键6、D【分析】将代入方程求解即可【详解】解:将代入可得:,解得:,故选:D【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键7、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值【详解】解:根据题意,;,解得:,;故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解所以解高次方程一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键8、D【分析】先求出的值,再判断出其符号即可【详解】解: b24ac124×1×(3)130,方程有两个不相等的实数根故选:D【点睛】本题考查的是根的判别式,熟知一元二次方程ax2bxc0(a0)的根与b24ac的关系是解答此题的关键9、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案【详解】解:由题意可知:两根之和:,故A错误,x22xm0有两个不相等的实数根,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键10、B【分析】由根的判别式为b24ac,挨个计算四个选项中的值,由此即可得出结论【详解】解:A、b24ac024×1×(8)320,该方程有两个不相等的实数根;B、b24ac(4)24×1×(4)0,该方程有两个相等的实数根;C、b24ac024×2×3240,该方程没有实数根;D、b24ac(2)24×1×(1)80,该方程有两个不相等的实数根故选:B【点睛】本题考查了一元二次方程根的判别式,解题的关键是根据根的判别式的正负判定实数根的个数二、填空题1、2【分析】把方程的根代入原方程,求解即可【详解】解:因为关于x方程的一个根是1,所以,解得,故答案为:2【点睛】本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解2、3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:,解得,且,为整数,整数的最大值为3,故答案为:3【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键3、x1=5,x2=1【分析】先根据算术平方根求出a的值,在代入解一元二次方程即可【详解】解:=9,9的算术平方根是3,a=3,关于x的方程(x-a)2=4变为(x-3)2=4x-3=±2解得x1=5,x2=1故答案为:x1=5,x2=1【点睛】本题考查了算术平方根的求法和一元二次方程的解法,做题的关键是求出a的值4、2x2-9x+4=0【分析】设条纹的宽度为x米,根据“配色条纹所占面积=整个地毯面积的”的等量关系列出方程并整理即可【详解】解:设条纹的宽度为x米依题意得:2x×5+2x×44x2=×5×4整理得:2x2-9x+4=0故填2x2-9x+4=0【点睛】本题主要考查了列一元二次方程,审清题意、找到等量关系成为解答本题的关键5、-2【分析】根据“月亮”方程的定义得出,变形为代入计算即可【详解】解:方程是“月亮”方程, 故答案为-2【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解利用整体代入的方法计算是解决本题的关键三、解答题1、(1)该商品的售价为30元/件;(2)该店每月的捐款金额为270元【分析】(1)根据总利润=每杯饮品的利润×销售数量,即可得出关于x的一元二次方程,解之再根据题意取舍即可得出结论;(2)根据每月的捐款金额=1×每天销售的数量×30,即可得出结论【详解】解:(1)该饮品的售价为x元/杯(20x40),且当售价是40元/杯时,每天可售出该饮品60杯,且售价每降低1元,就会多售出3杯,每天能售出该饮品的杯数为60+3(40-x)=(180-3x)杯依题意,得:(x-20)(180-3x)-300=600,整理,得:x2-80x+1500=0,解得:x1=30,x2=50物价局规定每杯饮品的利润不得高于成本价的80%,x40×80%,即x32,x=50(不合题意,舍去)答:该商品的售价为30元/件;(2)1×(180-3×30)×30=270(元)答:该店每月的捐款金额为270元【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键2、(1)c2;(2)当c5时,m有0个;当c5时,m有1个;当1c5时,m有2个;当c1时,m有3个;当c1时,m有4个【分析】(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;(2)根据题意,AB=m22mc1=3,分m22mc10和m22mc10两种情况,利用一元二次方程根的判别式与根的关系求解即可【详解】解:(1)根据题意,若两个函数图像只有一个公共点,则方程x23xcx1有两个相等的实数根,=b24ac224(c1)0,c2;(2)由题意,A(m,m+1),B(m,m23mc)AB=m23mcm1=m22mc1=3,当m22mc10时,m22mc1=3,即m22mc4=0,=224(c4)=204c,令=204c=0,解得:c=5,当c5时,0,方程有两个不相等的实数根,即m有2个;当c=5时,=0,方程有两个相等的实数根,即m有1个;当c5时,0,方程无实数根,即m有0个;当m22mc10时,m22mc1=3,即m22mc+2=0,=224(c+2)=4c4,令=4c4=0,解得:c=1,当c1时,0,方程有两个不相等的实数根,即m有2个;当c=1时,=0,方程有两个相等的实数根,即m有1个;当c1时,0,方程无实数根,即m有0个;综上,当c5时,m有0个;当c5时,m有1个;当1c5时,m有2个;当c1时,m有3个;当c1时,m有4个【点睛】本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:0,方程有两个不相等的实数根,=0,方程有两个相等的实数根,0,方程无实数根3、(1)2;(2)或.【分析】(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;(2)根据题意利用配方法进行计算即可解出方程.【详解】解:(1)原式(2)则或,解得:或.【点睛】本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键.4、(1)或;(2)【分析】(1)根据方程的特点,因式分解法解方程,进而求得的值;(2)根据方程的解,以及,即可求得k的取值范围【详解】解:有实根(1)即解得即或解得或(2)若,则解得【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键5、(1)80件;(2)40【分析】(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可【详解】解:(1)第一周甲商品的销售额为(元),第一周乙商品的销售额为(元)设甲商品销售了x件,则乙商品销售了件,依题意,得:,解得:,经检验,是原方程的解,且符合题意答:甲商品销售了80件(2)第一周甲商品的销售单价为(元),第一周乙商品的销售单价为(元)依题意,得:整理,得:,解得:,(不合题意,舍去)答:a的值为40【点睛】本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程