必考点解析京改版七年级数学下册第八章因式分解专题测评试题(含答案及详细解析).docx
-
资源ID:28204451
资源大小:218.52KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
必考点解析京改版七年级数学下册第八章因式分解专题测评试题(含答案及详细解析).docx
京改版七年级数学下册第八章因式分解专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式结果正确的是( )Aa2b7abbb(a27a)B3x2y3xy6y3y(x2x2)C8xyz6x2y22xyz(43xy)D2a24ab6ac2a(a2b3c)2、下列各式中,从左到右的变形是因式分解的是( )ABCD3、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y4、下列分解因式正确的是( )ABCD5、判断下列不能运用平方差公式因式分解的是()Am2+4Bx2y2Cx2y21D(ma)2(m+a)26、下列各式能用公式法因式分解的是( )ABCD7、下列多项式中,不能用公式法因式分解的是( )ABCD8、当n为自然数时,(n+1)2(n3)2一定能()A被5整除B被6整除C被7整除D被8整除9、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)10、把多项式x32x2+x分解因式结果正确的是( )Ax(x22x)Bx2(x2)Cx(x+1)(x1)Dx(x1)2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、已知实数a和b适合a2b2a2b214ab,则ab_3、分解因式:_(直接写出结果)4、分解因式:12a2b9ac_5、已知a2a10,则a32a22021_三、解答题(5小题,每小题10分,共计50分)1、已知,求值:(1);(2)2、因式分解(1)(2)(3)3、把下列各式因式分解:(1) (2)4、(1)计算:(2)计算:(3)分解因式:;(4)分解因式:5、因式分解(1); (2)-参考答案-一、单选题1、D【解析】【分析】分别对四个选项进行因式分解,然后进行判断即可【详解】解:A、原式b(a27a-1),故不符合题意;B、原式3y(x2x2),故不符合题意;C、原式2xy(4z3xy),故不符合题意;D、原式2a(a2b3c),故符合题意故选D【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式2、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.3、D【解析】【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键4、C【解析】【分析】根据因式分解的方法逐个判断即可【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解5、B【解析】【分析】根据平方差公式:进行逐一求解判断即可【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式6、A【解析】【分析】利用完全平方公式和平方差公式对各个选项进行判断即可【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误故选:A【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键7、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.8、D【解析】【分析】先把(n+1)2(n3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2(n3)2 n为自然数所以(n+1)2(n3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.9、B【解析】【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底10、D【解析】【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.二、填空题1、#()(2- x)(2+x)【解析】【分析】观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可【详解】解:故答案为:【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反2、2或2#-2或2【解析】【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案【详解】解:a2b2a2b214ab,a2b22ab1a22abb20,(ab1)2(ab)20,又(ab1)20,(ab)20,ab10,ab0,ab1,ab,a21,a±1,ab1或ab1,当ab1时,ab2;当ab1时,ab2,故答案为:2或2【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键3、2(xa)(4a2b3c)【解析】【分析】提出公因式2(xa)即可求得结果【详解】解:2(xa)(4a2b3c)故答案为:2(xa)(4a2b3c)【点睛】本题考查了提公因式法因式分解,正确的找到公因式是解题的关键4、【解析】【分析】根据提公因式法分解因式求解即可【详解】解:12a2b9ac故答案为:【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等5、2022【解析】【分析】将已知条件变形为a21a、a2a1,然后将代数式a32a22021进一步变形进行求解【详解】解:a2a10,a21a、a2a1,a32a22021,aa22(1a)2021,a(1a)22a2021,aa22a2023,a2a2023,(a2a)2023,120232022故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用三、解答题1、(1);(2)【解析】【分析】(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;(2)由可得:由,可得再把分解因式即可得到答案.【详解】解:(1) , 则 (2) , 【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.2、(1);(2);(3)【解析】【分析】(1)由题意直接根据完全平方差公式即可进行因式分解;(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.【详解】解:(1)(2)(3)【点睛】本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键3、(1);(2)【解析】【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 【详解】(1),原式 ;(2) ,原式,【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键4、(1);(2);(3);(4)【解析】【分析】(1)根据多项式乘以单项式,利用多项式的每一项分别与单项式相乘,再把积相加进行计算即可;(2)首先计算小括号,再合并化简中括号里面,最后计算除法即可(3)原式提取公因式即可;(4)原式利用平方差公式 分解即可【详解】解:(1)原式;(2)原式,(3)原式;(4)原式【点睛】此题主要考查了整式的混合运算和提公因式法与公式法的综合运用,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算5、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)【解析】【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可【详解】解:(1);(2)【点睛】本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键