难点详解北师大版八年级数学下册第六章平行四边形专题练习试题(名师精选).docx
-
资源ID:28205268
资源大小:335.40KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版八年级数学下册第六章平行四边形专题练习试题(名师精选).docx
北师大版八年级数学下册第六章平行四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或172、若一个正多边形每个外角都是36°,则这个正多边形的边数为()A8B9C10D113、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D44、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24<m<39B14<m<62C7<m<31D7<m<125、一个多边形的内角和是外角和的5倍,则这个多边形是()A12B11C10D96、一个多边形的内角和是它的外角和的两倍,则从这个多边形的一个顶点出发共有()条对角线A6条B4条C3条D2条7、七边形的内角和为( )A720°B900°C1080°D1440°8、若一个多边形的外角和是它内角和的,那么这个多边形是( )A三角形B四边形C五边形D六边形9、如图,四边形ABCD中,A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD10、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,A110°,C80°,将BMN沿MN翻折,得到FMN若MFAD,FNDC,则D的度数为 _2、一个正五边形和一个正六边形按如图所示方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则的度数是_度3、正多边形的一个外角是45°,则它是正_边形4、如图中x的值为 _5、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm三、解答题(5小题,每小题10分,共计50分)1、在中,将ABO绕点O逆时针方向旋转90°得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积?2、(1)四边形ABCD中,A140°,D80°如图1,若BC,则C_°;如图2,若ABC的平分线BE交DC于点E,且,则_°;如图3,若ABC和BCD的平分线相交于点E,则BEC_°;(2)如图3,当,时,若ABC和BCD的平分线交于点E,BEC与,之间的数量关系为_;(3)如图4,在五边形ABCDE中,ABE300°,CP,DP分别平分BCD和EDC,求P的度数3、如图,在四边形中,求四边形的面积4、化简、求解(1)若a,b,c是ABC的三边的长,化简|a-b-c|+|b-c-a|+|c+a-b|(2)已知一正多边形的内角与其相邻的外角的比为3:1,求该多边形的边数5、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数-参考答案-一、单选题1、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180°=2340°,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180°(n为边数)是解题的关键2、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数【详解】解:这个正多边形的边数为n,正n边形每个外角都是36°,n=360°÷36°=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键3、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90°,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60°,在ABCD中,BAD=C=60°,ADBC,DAH=BHA,AB=BH,BAH=BHA,BAH=DAH=30°,AHD=90°,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法4、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键5、A【分析】设这个多边形的边数为n,依据多边形的内角和是它的外角和的5倍列方程,即可得到n的值【详解】解:设这个多边形的边数为n,依题意得(n-2)180°=5×360°,解得n=12,这个多边形是十二边形,故选:A【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于360°6、C【分析】先由多边形的内角和公式与外角和的关系可得再解方程,从而可得答案.【详解】解:设这个多边形为边形,则 解得: 所以从这个多边形的一个顶点出发共有条对角线,故选C【点睛】本题考查的是多边形的内角和定理与外角和定理,多边形的对角线问题,掌握“利用多边形的内角和为 外角和为”是解题的关键.7、B【分析】根据多边形内角和公式即可求解【详解】解:七边形的内角和为:(7-2)×180°=900°,故选:B【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键8、C【分析】根据多边形的内角和的计算公式与外角和是360°列出方程,解方程即可【详解】解:设这个多边形边数是n,则(n2)×180°×360°,解得n5故选:C【点睛】本题考查的是多边形的内角与外角,掌握n边形的内角和为(n2)180°、外角和是360°是解题的关键9、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60° AH=2×=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键10、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键二、填空题1、【分析】根据平行线的性质可得,由折叠的性质可得,再根据四边形内角和即可求解【详解】解:MFAD,FNDC,由折叠的性质可得,四边形内角和的性质可得,故答案为:【点睛】此题考查了四边形内角和的性质,涉及了平行线以及折叠的性质,解题的关键是灵活运用相关性质进行求解2、84【分析】设直线l与正五边形和正六边形的交点为C、D,根据多边形内角计算公式可得:,则有,进而根据三角形内角和定理可求得,然后根据周角可求解【详解】解:设直线l与正五边形和正六边形的交点为C、D,如图所示:一个正五边形和一个正六边形都有一边在直线l上,且根据多边形内角和可得:,根据领补角可得:,故答案为84°【点睛】本题主要考查正多边形内角的计算及三角形内角和定理,正确理解正多边形的内角的算法是解题的关键3、八【分析】利用任意多边形的外角和均为360°,正多边形的每个外角相等即可求出答案【详解】360÷45=8故它是正八边形故答案为:八【点睛】此题主要考查了多边形的外角和,利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案4、130【分析】由题意直接根据五边形的内角和是540°列出方程,解方程即可【详解】解:因为五边形的内角和是:(52)×180°540°,所以x+x+80+90+(x20)540,解得x130,故答案为:130【点睛】本题考查多边形的内角和定理,注意掌握多边形的内角和定理(n2)×180°(n为边数)是解题的关键.5、8【分析】运用三角形的中位线的知识解答即可【详解】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键三、解答题1、(1)6,;(2)见解析;(3)36【分析】(1)根据旋转的性质得出,由此可得答案;(2)根据题意可得,再根据平行四边形的判定即可得证;(3)利用平行四边形的面积公式求解【详解】解:(1),是等腰直角三角形,将绕点O沿逆时针方向旋转得到, ,故答案为:6,;(2)将绕点O沿逆时针方向旋转得到,四边形是平行四边形(3)四边形OAA1B1的面积=OAA1O=6×6=36四边形OAA1B1的面积是36【点睛】本题考查了旋转的性质以及平行四边形的判定,熟练掌握旋转的性质是解决本题的关键,注意:旋转前后的两个图形全等2、(1)70°;60°;110°;(2);(3)60°【分析】(1)根据四边形内角和为360度进行求解即可;先根据平行线的性质求出ABE=180°-A=40°,再由角平分线的定义求出ABC=2ABE=80°,再由四边形内角和为360度进行求解即可;先根据四边形内角和为360度求出ABC+ACB =140°,再由角平分线的定义得到,最后利用三角形内角和定理求解即可;(2)同(1)的方法求解即可;(3)同(1)的方法,先求出,然后根据角平分线的定义以及三角形内角和定理求解即可【详解】(1)A=140°,D=80°,B=C,故答案为:70°;BEAD,A=140°,ABE=180°-A=40°,BE平分ABC,ABC=2ABE=80°,C=360°-A-D-ABC=60°,故答案为:60°;A140°,D80°,ABC+ACB=360°-A-D=140°,ABC和BCD的平分线相交于点E,故答案为:110°;(2),ABC和BCD的平分线相交于点E,故答案为:;(3),又CP,DP分别平分BCD和EDC,.,【点睛】本题主要考查了四边形内角和,三角形内角和定理,多边形内角和公式,角平分线的定义,解题的关键在于能够熟练掌握多边形内角和公式3、18【分析】延长CB至点E,使得BE=DC,然后由题意易证ADCABE,则有DAC=BAE,AC=AE,进而可得CAE=90°,最后问题可求解【详解】解:延长CB至点E,使得BE=DC,如图所示:,ADCABE,DAC=BAE,AC=AE,即,ACE是等腰直角三角形,【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和,熟练掌握全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和是解题的关键4、(1)a-b+3c;(2)这个多边形的边数为8【分析】(1)利用三角形的三边关系得到a-b-c<0,b-c-a<0,c+a-b>0,然后去绝对值符号后化简即可;(2)根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数【详解】解:(1)|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+a+c-b+c+a-b =a-b+3c (2)正多边形的内角与其外角的度数比为3:1每一个外角为180°×45° 边数360°÷45°8 即这个多边形的边数为8【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题5、15【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案【详解】设新多边形是n边形,由多边形内角和公式得:,解得:,则原多边形的边数是:原多边形的边数是15【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式