难点详解北师大版九年级数学下册第二章二次函数专项测试试题(含详解).docx
-
资源ID:28205421
资源大小:459.68KB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版九年级数学下册第二章二次函数专项测试试题(含详解).docx
北师大版九年级数学下册第二章二次函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于任何实数,抛物线与抛物线的相同点是( )A形状与开口方向相同B对称轴相同C顶点相同D都有最低点2、若A(-6,y1),B(-3,y2),C(1,y3)为二次函数图象上的三点,则y1,y2,y3的大小关系是( )Ay2y3y1By1y2y3Cy3y1y2Dy2y1y33、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 24、二次函数的图象的顶点坐标是( )ABCD5、将抛物线向下平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )ABCD6、抛物线y(x+2)2+1可由抛物线yx2平移得到,下列平移正确的是()A先向右平移2个单位,再向上平移1个单位B先向右平移2个单位,再向下平移1个单位C先向左平移2个单位,再向上平移1个单位D先向左平移2个单位,再向下平移1个单位7、一次函数与二次函数在同一平面直角坐标系中的图象大致是( )ABCD8、对于题目“抛物线:与直线:只有一个交点,则整数的值有几个”;你认为的值有( )A3个B5个C6个D7个9、正方形的面积y与它的周长x满足的函数关系是( )A正比例函数B一次函数C二次函数D反比例函数10、已知二次函数的图象如图所示,则下列结论正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数的图象如图所示,则一次函数的图象不经过_2、二次函数的最小值是_;3、抛物线的顶点坐标是_4、抛物线与x轴交于点(2,0),(1,0),利用两点式抛物线解析式可设为:_5、点A(x1,y1),B(x2,y2)(x1·x20)是y=ax2(a0)图象上的点,存在=1时,=1成立,写出一个满足条件a的值_三、解答题(5小题,每小题10分,共计50分)1、疫情从未远去,据云南省卫健委通报,连续天,云南省的本土日新增确诊病例均超过例,从月日到月日,短短一周时间,本轮疫情中的本土确诊病例累计已达例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为元的消毒液,市场调查发现,每天的销售量瓶与每瓶的售价元之间满足如图所示的函数关系(1)求与之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?2、对于二次函数,请回答下列问题:(1)求出此函数图像的顶点坐标;(2)当时,请直接写出的取值范围3、在平面直角坐标系xOy中,抛物线的对称轴是直线(1)用含a的式子表示b;(2)求抛物线的顶点坐标;(3),是抛物线上两点,记抛物线在M,N之间的部分为图象G(包括M,N两点),图象G上任意两点纵坐标差的最大值记为h,若存在m,使得,直接写出a的取值范围4、一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)405060y(件)1000095009000(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大请求出m的取值范围5、在平面直角坐标系xOy中,关于x的二次函数y=-2ax+b与y轴相交于点(0,-3)(1)当抛物线的图象经过点(1,-4)时,求该抛物线的表达式;(2)求这个二次函数的对称轴(用含a的式子表示);(3)若抛物线上存在两点A(,)和B(,),其中-=0,+=0当<0,>0时,总有+>0,求a的取值范围-参考答案-一、单选题1、A【分析】根据抛物线的图象与性质即可解答;【详解】解:对于任何实数,抛物线与抛物线的相同点是形状与开口方向相同,抛物线的对称轴是y轴,顶点是原点,有最高点(0,0);抛物线的对称轴是直线x=h,顶点是(h,0),有最高点(h,0);故选:A【点睛】本题考查了抛物线的图象与性质,属于基础题目,熟练掌握抛物线的图象与性质是关键2、A【分析】根据二次函数的对称性和增减性即可得【详解】解:二次函数的对称轴为直线,时的函数值与时的函数值相等,即为,又在内,随的增大而减小,且,故选:A【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的对称性和增减性是解题关键3、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键4、D【分析】直接根据二次函数的顶点式写出顶点坐标即可【详解】解:抛物线解析式为 , 其顶点坐标为(3,1),故选D【点睛】本题考查了二次函数顶点式的性质,正确理解知识点是解题的关键5、D【分析】根据抛物线平移的性质计算即可【详解】抛物线的顶点坐标为(0,0)又向下平移3个单位长度,再向右平移5个单位长度此时顶点坐标为(5,-3)移动后抛物线方程为故选:D【点睛】本题考查了抛物线的移动,抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关抛物线的移动主要看顶点的移动,的顶点是(0,0),抛物线的平移口诀:自变量加减左右移,函数值加减上下移6、C【分析】根据平移的规律“左加右减,上加下减”,将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,即可求得答案【详解】解:根据题意将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,故选C【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意弄清是谁平移到谁7、C【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论【详解】解:A.二次函数图象开口向下,对称轴在y轴右侧,a<0,b>0,一次函数图象应该过第一、二、四象限,A错误;B.二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,B错误;C.二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,一次函数图象应该过第二、三、四象限,C正确;D. 二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,D错误;故选C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键8、D【分析】根据二次函数的图象和性质解答即可【详解】解:由抛物线:可知:抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,4),如图,当x=1时,y=0,当x=4时,y=5,抛物线与直线y=m只有一个交点,0m5或m=4,整数m=0或1或2或3或4或5或4,即整数m的值有7个,故选:D【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解答的关键9、C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案【详解】解:正方形的周长为x,正方形的边长为,正方形的面积;故选:C【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式10、D【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴左侧,得到a与b同号,可得出b0,又抛物线与y轴交于正半轴,得到c大于0,可判断选项A;由x=-1时,对应的函数值大于0,可判断选项B;由x=-2时对应的函数值小于0,可判断选项C;由对称轴大于-1,利用对称轴公式得到b2a,可判断选项D【详解】解:由抛物线的开口向下,得到a0,-0,b0,由抛物线与y轴交于正半轴,得到c0,abc0,故选项A错误;x=-1时,对应的函数值大于0,a-b+c0,故选项B错误;x=-2时对应的函数值小于0,4a-2b+c0,故选项C错误;对称轴大于-1,且小于0,0-1,即0b2a,故选项D正确,故选:D【点睛】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否二、填空题1、第四象限【分析】由二次函数的图象可判断出a、b的符号,再进行判断一次函数的图象所在的象限,即可求解【详解】解:二次函数图象开口向上,对称轴,一次函数与y轴的交点在x轴的上方,且,经过一、三象限,一次函数的图象经过第一、二、三象限,不经过第四象限,故答案为:第四象限【点睛】本题主要考查二次函数的图象与系数的关系,一次函数图象的性质,掌握二次函数及一次函数图象的性质是解题关键2、-4【分析】将函数化为顶点式分析即可【详解】解:,可得:当x-1时,y有最小值-4,故答案为:-4【点睛】本题考查二次函数的性质,涉及函数的最值,属于基础题3、 (2,5)【分析】直接利用顶点式的特点可写出顶点坐标【详解】解:抛物线的顶点坐标是(2,5)故答案为:(2,5)【点睛】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)4、【分析】根据两点式解析式的特点设【详解】解:抛物线与x轴交于点(2,0),(1,0),抛物线解析式可设为,故答案为:【点睛】此题考查了两点式解析式的公式,正确掌握公式及字母表示的意义是解题的关键5、【分析】由可知图像一定过,令,由=1时,=1成立,取,代入中解出即可【详解】一定过,令,=1时,=1成立,取,,,解得:故答案为:【点睛】本题考查二次函数的图像与性质,掌握二次函数图像上点的坐标特点是解题的关键三、解答题1、(1);(2)当每瓶的销售单价定为元时,药店可获得最大利润,最大利润是元【分析】(1)先设出一次函数的解析式,再用待定系数法求解即可;(2)根据利润单盒利润销售量列出函数解析式,再根据函数的性质求函数的最值【详解】解:(1)设与之间的函数关系式为,由题意得:,解得:,与之间的函数关系式为;(2)设每天利润为元,则 ,当时,随的增大而增大,又,当时,最大,最大值为元,当每瓶的销售单价定为元时,药店可获得最大利润,最大利润是元【点睛】本题考查二次函数的应用以及待定系数法求函数解析式,关键是根据题意列出函数关系式2、(1)(-1,-4);(2)【分析】(1)把二次函数解析式化为顶点式求解即可;(2)先求出抛物线对称轴为直线,推出当x>-1时,y随x增大而增大,当x<-1时,y随x增大而减小,然后分别求出当时,当时,由此即可得到答案【详解】解:(1)抛物线解析式为,抛物线的顶点坐标为(-1,-4);(2)抛物线解析式为,抛物线对称轴为直线,抛物线开口向上,当x>-1时,y随x增大而增大,当x<-1时,y随x增大而减小,抛物线的最小值为-4,当时,当时,当2<x<2时,【点睛】本题主要考查了求二次函数顶点坐标,二次函数的函数值取值范围,解题的关键在于能够熟练掌握二次函数的相关知识3、(1);(2)(1,-5);(3)当抛物线开口向上,时,;当抛物线开口向上,或时,;当抛物线开口向下,时,;当抛物线开口向下,或时,;【分析】(1)根据抛物线对称轴公式进行求解即可;(2)把抛物线化成顶点式即可得到答案;(3)分当和当两种情况,然后讨论抛物线顶点与图像G的位置关系,由此求解即可【详解】解:(1)抛物线的对称轴是直线,;(2),抛物线解析式为,抛物线顶点坐标为(1,-5);(3)当,即时,图像G上纵坐标的最小值为-5,当时,当时,;当时,图像G上纵坐标的最小值为,最大值为,;当时,图像G上纵坐标的最大值为,最小值为,;当,即时,图像G上纵坐标的最大值为-5,当时,当时,;当时,图像G上纵坐标的最大值为,最小值为,;当时,图像G上纵坐标的最小值为,最大值为,;综上所述,当抛物线开口向上,时,;当抛物线开口向上,或时,;当抛物线开口向下,时,;当抛物线开口向下,或时,;【点睛】本题主要考查了二次函数图像的性质,求二次函数顶点坐标,求二次函数函数值的取值范围,解题的关键在于能够熟练掌握二次函数的相关知识4、(1);(2)这一周该商场的最大利润为540000元,售价为120元;(3)【分析】(1)用待定系数法求出一次函数的解析式便可;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”列出x的不等式组,求得x的取值范围,再设利润为w元,由w=(x-30)y,列出w关于x的二次函数,再根据二次函数的性质求出利润的最大值和售价;(3)根据题意列出利润w关于售价x的函数解析式,再根据函数的性质,列出m的不等式进行解答便可【详解】解:(1)设y与x的函数关系式为:y=kx+b(k0),把x=40,y=10000和x=50,y=9500代入得,解得,y=-50x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”得,解得,30x120,设利润为w元,根据题意得,w=(x-30)y=(x-30)(-50x+12000)=-50x2+13500x-360000=-50(x-135)2+551250,对称轴为直线x=135,-500,当x135时,w随x的增大而增大,30x120,且x为正整数当x=120时,w取最大值为:-50×(120-135)2+551250=540000,答:这一周该商场销售这种商品获得的最大利润为540000元,售价为120元;(3)根据题意得,w=(x-30-m)(-50x+12000)=-50x2+(13500+50m)x-360000-12000m,对称轴为x=-=135+0.5m,-500,当x135+0.5m时,w随x的增大而增大,该商场这种商品售价不大于150元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大对称轴x=135+0.5m,m大于等于10,则对称轴大于等于140,由于x取整数,实际上x是二次函数的离散整数点, 只需保证x=150时利润大于x=149时即可满足要求,所以对称轴要大于149.5就可以了,故135+0.5m149.5,解得m29,10m60,29m60【点睛】本题考查了一次函数的实际应用,二次函数的实际应用,一元一次不等式组的实际应用,二次函数的性质,待定系数法,关键是读懂题意,正确列出函数解析式和不等式组5、(1)y=-2x-3(2)(3)a>0【分析】(1)把(0,-3)和(1,-4)分别代入解析式,解答即可;(2)根据对称轴为直线x=计算即可;(3)把坐标代入解析式,后进行代换,保留,后进行作差,因式分解,解不等式求解(1)解:y=-2ax+b与y轴相交于点(0,-3),y=-2ax-3,抛物线的图象经过点(1,-4),1-2a-3=-4, a=1 , y=-2x-3 (2)解:(3)A(,)和B(,)是二次函数y=-2ax+b图像上的两点,-=0,+=0,-得,<0,>0时,+>0,-<0,+>0,【点睛】本题考查了二次函数解析式,对称轴,性质,不等式的性质,熟练掌握待定系数法,对称轴的计算公式,灵活运用抛物线的性质,不等式的性质是解题的关键