难点解析京改版八年级数学下册第十七章方差与频数分布章节测评练习题(无超纲).docx
-
资源ID:28207458
资源大小:262.98KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析京改版八年级数学下册第十七章方差与频数分布章节测评练习题(无超纲).docx
京改版八年级数学下册第十七章方差与频数分布章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A3和2B4和3C5和2D6 和22、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A甲比乙稳定B乙比甲稳定C甲与乙一样稳定D无法确定3、一组数据a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,则另一组数据2a3、2b3、2c3、2d3、2e3、2f3、2g3的平均数和方差分别是( )A2m3、2n3B2m1、4nC2m3、2nD2m3、4n4、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )A50件B500件C5000件D50000件5、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:=3.6,=6.3则麦苗又高又整齐的是()A甲B乙C丙D丁6、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )参加人数平均数中位数方差甲4095935.1乙4095954.6A甲班的成绩比乙班的成绩稳定B甲班成绩优异的人数比乙班多C甲,乙两班竞褰成绩的众数相同D小明得94分将排在甲班的前20名7、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是( )A甲团B乙团C丙团D丁团8、下列说法正确的是()A调查“行云二号”各零部件的质量适宜采用抽样调查方式B5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定9、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲26,S乙224,S丙225.5,S丁236,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁10、已知一组数据的方差s2(67)2+(107)2+(a7)2+(b7)2+(87)2(a,b为常数),则a+b的值为()A5B7C10D11第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m)这六次成绩的平均数为7.8,方差为如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _(填“变大”、“不变”或“变小”)2、若一组数据,的平均数是2,方差是1则,的平均数是_,方差是_3、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_kg4、一组数据,的平均数是,这组数据的方差为_5、某班级有45名学生在期中考试学情分析中,分数段在7079分的频率为0.4,则该班级在这个分数段内的学生有 _人三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读36本图书活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误(1)请指出条形统计图中存在的错误,并说明理由;(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类(3)请计算D类学生在扇形统计图中的圆心角3、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学生成绩数据统计表班级甲校乙校平均数78.678.4中位数b80众数c80根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值: , , ;(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?4、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?5、为配合“禁烟”行动,某校组织同学们在我市某社区开展了“你最支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个不完整的统计图:(1)根据以上信息,把条形统计图补充完整(并标注人数);(2)在统计图中,表示“强制戒烟”方式的扇形的圆心角为多少度?(3)假定该社区有1万人,请估计该社区大约有多少人支持采取“警示戒烟”这种戒烟方式?-参考答案-一、单选题1、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解【详解】解:由题意得,解得x=6,这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键2、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,甲、乙制作的个数稳定性一样,故选:C【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键3、B【分析】根据平均数和方差的变化规律即可得出答案【详解】a1、b1、c1、d1、e1、f1、g1的平均数是m,方差是n,数据a、b、c、d、e、f、g的平均数是m+1,方差是n,2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;数据a、b、c、d、e、f、g的方差是n,数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n;故选:B【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数4、C【分析】抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数【详解】解:某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,不合格率为5÷1005%,估计该厂这10万件产品中不合格品约为10×5%0.5万件,故选C【点睛】此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率5、D【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可【详解】解:,乙、丁的麦苗比甲、丙要高,甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定6、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可【详解】A乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定7、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S=6,S=1.8,S=5,S=8,1.8<5<6<8S最小,这四个旅游团中年龄相近的旅游团是:乙团故选:B【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定8、B【分析】分别对各个选项进行判断,即可得出结论【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键9、A【分析】根据方差的意义求解即可【详解】解:S甲26,S乙224,S丙225.5,S丁236,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好掌握方差的意义是解题的关键10、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则×(610ab8)7,ab11,故选:D【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数二、填空题1、变大【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案【详解】解:李强再跳两次,成绩分别为7.6,8.0,这组数据的平均数是,这8次跳远成绩的方差是:0.0225,方差变大;故答案为:变大【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键2、8 9 【分析】根据平均数和方差的性质及计算公式直接求解可得【详解】解:数据x1,x2,xn的平均数是2,数据3x1+2,3x2+2,+3xn+2的平均数是3×2+2=8;数据x1,x2,xn的方差为1,数据3x1,3x2,3x3,3xn的方差是1×32=9,数据3x1+2,3x2+2,+3xn+2的方差是9故答案为:8、9【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变3、850【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可【详解】解:大量重复试验发芽率逐渐稳定在0.85左右,1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)故答案为:850【点睛】此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解4、0.8【分析】根据平均数的计算公式先求出a的值,再根据方差公式代数计算即可【详解】解:3,5,a,4,3的平均数是4,(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S2= (3-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2=0.8,故答案为:0.8【点睛】本题考查了方差,一般地设n个数据,x1,x2,xn的平均数为,则方差,此题难度不大5、18【分析】根据频数总数×频率,直接求解即可【详解】依题意该班级在在7079分数段内的学生有(人)故答案为:18【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键三、解答题1、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得【详解】(1)本次抽样调查的书有8÷20%40(本);(2)其它类的书的数量为40×15%6(本),补全图形如下:(3)估计科普类书籍的本数为1200×360(本)【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息2、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为【分析】(1)依次计算每一项正确的数量,即可判断条形统计图的错误;(2)利用样本估计总体的思想解决问题即可;(3)用360°乘以“D”类人数所占比例即可;【详解】解:(1)C项错误,学生数应为12,理由如下:A类学生数是:,B类学生数是:,C类学生数是:,D类学生数是:,所以,C项错误,学生数应为12(2)该校有3000名学生,估计学生阅读量为B类人数:(人)所以,该校有3000名学生,估计全校共1200学生阅读量为B类(3)D类学生在扇形统计图中的圆心角:所以,D类学生在扇形统计图中的圆心角为【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据3、(1),;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B等的人数=20-20×(10+10+35)-1=8,于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有人,乙校约有人,求和即可【详解】(1)B等的人数=20-20×(10+10+35)-1=8,a=40;第10个,11个数据是80,82,b=;82出现次数最多,是5次,众数c=82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些; (3)由题意,甲校约有人,乙校约有人,两校共约有63+45=108人的成绩达到A级【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键4、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案【详解】解:(1)由题意得:总人数人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数人,补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键5、(1)见解析;(2)144°;(3)3500人【分析】(1)在条形统计图中找出“代替品戒烟”人数为30人,在扇形统计图中所占的百分比为,求出随机调查的总人数,由总人数及“药物戒烟”所占的百分比,“警戒戒烟”所占的百分比,求出各自的人数,补全条形统计图即可;(2)“强制戒烟”的人数为120人,总人数为300人,求出所占的百分比,再乘以即可;(3)先求出样本中支持“警戒戒烟”这种方式所占的百分比,再利用样本估计总体即可得出答案【详解】(1)如图所示:(2)调查的人数=30÷10%=300(人),“强制戒烟”方式的扇形的圆心角=(120÷300)×100%×360°=144°;(3)支持“警示戒烟”方式的人数=(1-10%-15%-40%)×10000=3500(人),答:该社区大约有3500人支持采取“警示戒烟”这种戒烟方式【点睛】本题考查条形统计图、扇形统计图以及用样本估计总体,根据统计图,找出有用信息是解题的关键