欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx

    • 资源ID:28213361       资源大小:964.28KB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx

    沪科版九年级数学下册第24章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与O的位置关系是( )A相离B相切C相交D相交或相切2、下列各点中,关于原点对称的两个点是()A(5,0)与(0,5)B(0,2)与(2,0)C(2,1)与(2,1)D(2,1)与(2,1)3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的4、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米5、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定6、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD8、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm9、如图,ABC中,ACB90°,ABC40°将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50°B70°C110°D120°10、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(huán)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺2、如图,在RtABC,B=90°,AB=BC=1,将ABC绕着点C逆时针旋转60°,得到MNC,那么BM=_3、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58°,则ACB的大小是_4、一个五边形共有_条对角线5、如图,在O中,AB10,BC12,D是上一点,CD5,则AD的长为_三、解答题(5小题,每小题10分,共计50分)1、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版阿基米德全集第一题就是阿基米德折弦定理阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦), 是的中点,则从向所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接和是的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于,为上一点,于点,则的周长是_2、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)3、如图,AB是O的直径,点C是O上一点,连接BC,半径OD弦BC(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若O的半径为5,BC=6,求CD和EF的长4、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径(如图)(推论证明)已知:ABC的三个顶点都在O上,且ACB90° 求证:线段AB是O的直径 请你结合图写出推论1的证明过程(深入探究)如图,点A,B,C,D均在半径为1的O上,若ACB90°,ACD60°则线段AD的长为 (拓展应用)如图,已知ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE 若AB,则DE的长为 5、如图1,BC是O的直径,点A,P在O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQAP,交PC 的延长线于点Q,AQ交O于点D,已知AB3,AC4(1)求证:APQABC(2)如图2,当点C为的中点时,求AP的长(3)连结AO,OD,当PAC与AOD的一个内角相等时,求所有满足条件的AP的长-参考答案-一、单选题1、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.2、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:A、(5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(2,1)与(2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键4、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,d>r,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr6、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键9、B【分析】根据旋转可得,得【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质10、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得D=90°,CD=DE,从而得到CE是直径,ECD=45°,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90°,CD=DE,CE是直径,ECD=45°,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、【分析】设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,先证明EMCFMA得ME=MF,从而可得CBD=45°,CDB=180°-BCA-CBD=90°,再在RtBCD、RtCDM中,分别求出BD和DM,即可得到答案【详解】解:设BN与AC交于D,过M作MFBA于F,过M作MEBC于E,连接AM,如图:ABC绕着点C逆时针旋转60°,ACM=60°,CA=CM,ACM是等边三角形,CM=AM,ACM=MAC=60°,B=90°,AB=BC=1,BCA=CAB=45°,AC=CM,BCM=BCA+ACM=105°,BAM=CAB+MAC=105°,ECM=MAF=75°,MFBA,MEBC,E=F=90°,由得EMCFMA,ME=MF,而MFBA,MEBC,BM平分EBF,CBD=45°,CDB=180°-BCA-CBD=90°,RtBCD中,BD=BC=,RtCDM中,DM=CM =,BM=BD+DM=,故答案为:【点睛】本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明CDB=90°3、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键5、3【分析】过A作AEBC于E,过C作CFAD于F,根据圆周角定理可得ACB=B=D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明ABECDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解【详解】解:过A作AEBC于E,过C作CFAD于F,则AEB=CFD=90°, AB10,ACB=B=D,AB=AC=10,AEBC,BC=12,BE=CE=6, ,B=D,AEB=CFD=90°,ABECDF,AB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,在RtAFC中,AFC=90°,AC=10,CF=4,则,AD=DF+AF=32,故答案为:32【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键三、解答题1、(1)证明见解析;(2)【分析】(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;(2)首先证明,进而得出,以及,进而求出的长即可得出答案(1)证明:如图2,在上截取,连接,和是的中点,在和中,又,;(2)解:如图3,截取,连接,由题意可得:,在和中,则,则 故答案为:【点睛】此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键2、(1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键3、(1)见解析;(2)CD=,EF=1【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证(2)根据直径所对的圆周角是直角求出ACB=90°,根据平行线的性质求得AEO=ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以EDFBCF,最后根据似的性质,列方程求解即可【详解】(1)解:连结OC1=B2=COB =OCB=C1=2弧AD=弧CD(2)AB是的直径ACB=90°AEO=ACB=90°RtABC中,ACB=90°,BC=6,AB=10 AC=8半径ODAC于E EC=AE=4 OE=ED=2 由勾股定理得,CD=EDFCBF设EF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键4、【推论证明】见解析;【深入探究】;【拓展应用】【分析】推论证明:根据圆周角定理求出,即可证明出线段AB是O的直径;深入探究:连接AB,首先根据ACB90°得出AB是O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;拓展应用:连接AE,作CFDE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可【详解】解:推论证明:,A,B,O三点共线,又点O是圆心,AB是O的直径;深入探究:如图所示,连接AB,ACB90°AB是O的直径ACD60°在中,;拓展应用:如图所示,连接AE,作CFDE交DE于点F,ABC是等边三角形,点E是BC的中点,又以AC为底边在三角形ABC外作等腰直角三角形ACD,点A,E,C,D四点都在以AC为直径的圆上,CFDE是等腰直角三角形,解得:在中,【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理5、(1)见解析;(2)(3)当,时,;当时,【分析】(1)通过证,即可得;(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解【详解】证明:(1)AQAPBC是O的直径(2)如图,连接CD,PDBC是O的直径AB3,AC4利用勾股定理得:,即直径为5DP是O的直径,且DP=BC=5点C为的中点CD=PC是等腰直角三角形利用勾股定理得:,则,即:,即:(3)连接AO,OD,OP,CD,OD交AC于点M(已证)OD,OP共线,为O的直径情况一:当时,AP=PC即AP=PC在中,在中,情况二:当时,同情况一:情况三:当时,OA=OD综上所述,当,时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系

    注意事项

    本文(精品试卷沪科版九年级数学下册第24章圆定向攻克试卷(含答案详解).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开