精品解析2021-2022学年浙教版初中数学七年级下册第五章分式定向练习试卷(含答案详解).docx
-
资源ID:28213764
资源大小:233.27KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2021-2022学年浙教版初中数学七年级下册第五章分式定向练习试卷(含答案详解).docx
初中数学七年级下册第五章分式定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x2、计算:22(1)0( )A4B5CD3、若(a3)0有意义,则a的取值范围是()Aa3Ba3Ca0Da34、据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm,已知1nm109m,则90nm用科学记数法表示为( )A0.09×106mB0.9×107mC9×108mD90×109m5、下列运算正确的是()Ax2B(x3)2x5C(xy)3x3y3Dx6÷x2x36、某种冠状病毒细胞的直径约为m,用科学记数法表示该数是( )ABCD7、代数式的家中来了几位客人:、,其中属于分式家族成员的有( )A1个B2个C3个D4个8、若(a1)1有意义,则a的取值范围是()Aa0Ba2Ca1Da19、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD10、已知实数,满足:,则的值为( )A1BC7D二、填空题(5小题,每小题4分,共计20分)1、若,则_2、2020年1月24日,中国疾控中心成功分离我国首株新型冠状病毒毒种,该毒种直径大约为毫米数据“用科学记数法表示为则_3、某种生物细胞的直径约为0.000000076米,用科学记数法表示为 _米4、某种病毒的直径是0.00000007米,这个数据用科学记数法表示为_米5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、2、计算: (1); (2)3、观察下列等式:第一个等式:第二个等式:第三个等式:按上述规律,回答下列问题:(1)请写出第五个等式:;(2)用含n的式子表示第n个等式: (3)(得出最简结果)(4)计算:4、先化简,再求值:()÷,其中a15、(1)+()2+(3.14)0()2;(2)已知(2x1)290,求x的值-参考答案-一、单选题1、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法2、C【分析】直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案【详解】解:原式=故选C【点睛】此题主要考查了实数运算,正确化简各数是解题关键3、D【分析】根据零指数幂的底数不等于0,列出不等式,即可求解【详解】解:(a3)0有意义,a30,a3,故选D【点睛】本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键4、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:90nm=90×10-9m=9×10-8m故选:C【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值5、C【分析】根据负整指数幂,幂的乘方运算,积的乘方,同底数幂的除法逐项分析即可【详解】A. x2,故该选项不正确,不符合题意;B. (x3)2x6,故该选项不正确,不符合题意;C. (xy)3x3y3,故该选项正确,符合题意;D. x6÷x2x4,故该选项不正确,不符合题意;故选C【点睛】本题考查了负整数指数幂,幂的乘方运算,积的乘方,同底数幂的除法,掌握以上运算法则是解题的关键6、D【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故选D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键7、C【分析】根据分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,其中A称为分子,B称为分母,据此判断即可【详解】解:属于分式的有:、,故选:C【点睛】本题考查了分式的定义,熟知定义是解本题的关键8、D【分析】直接利用负整数指数幂的定义得出答案【详解】解:若有意义,a-10,则的取值范围是:故选:D【点睛】此题主要考查了负整数指数幂,正确掌握相关定义是解题关键9、B【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值10、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解题的关键二、填空题1、0,6,8,【分析】根据非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,可得答案【详解】解:m0时,(7)01,m71时,m8,(m7)81,m71时(m7)61,故答案为:0,6,8【点睛】本题考查了零次幂,非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,以防遗漏2、【分析】用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】故答案为:【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键3、7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000076米7.6×108米,故答案为:7.6×108【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、7×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000077×108故答案为:7×108【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、【分析】先将已知的式子化为倒数形式 ,化简后两边平方,再把所要求的式子的倒数化简求值,可得到最终结果【详解】, 故答案为:【点睛】考查分式值的计算,有一定灵活性,解题的关键是先求倒数三、解答题1、5【分析】先计算有理数的乘方,负整数指数幂,然后根据有理数的混合计算法则求解即可【详解】解:【点睛】本题主要考查了含乘方的有理数混合计算,零指数幂,负整数指数幂,熟知相关计算法则是解题的关键2、(1);(2)【分析】(1)先算乘方,再算括号,后算除法即可;(2)根据单项式与多项式的乘法法则计算即可;【详解】解:(1)原式=;(2)原式=【点睛】本题考查了负整数指数幂、零指数幂的意义,以及单项式与多项式的乘法计算,熟练掌握运算法则是解答本题的关键3、(1),;(2),(3);(4)【分析】(1)根据已知4个等式对比发现规律可得;(2)根据已知等式列出算式即可;(3)根据已知等式的规律列出算式,然后计算化简后的算式即为所求;(4)根据已知等式的规律列出算式,然后裂项相消,计算化简后的算式即为所求【详解】(1)观察得a5=;(2)观察得an=;(3);(4);【点睛】本题考查了分式的四则运算及数式的规律探究来理解裂项相消法,考验学生的阅读理解能力4、,-1【分析】先算括号内的减法,再把除法变成乘法,求出结果,最后代入求出即可【详解】解:原式 ,当a1时,原式【点睛】本题考查了分式的混合运算,对于分式的混合运算,应注意运算顺序:先算乘方,再算乘除,最后算加减,有括号的要先算括号内的此外,也应仔细观察式子的特点,灵活选择简便的方法计算,如使用运算律、公式等5、(1);(2)或【分析】(1)先计算算术平方根、立方根、负整数指数幂、零指数幂,再计算加减法即可得;(2)利用平方根解方程即可得【详解】解:(1)原式,;(2),或,或【点睛】本题考查了立方根、负整数指数幂、零指数幂、利用平方根解方程等知识点,熟练掌握各运算法则是解题关键