精品试卷京改版九年级数学下册第二十五章-概率的求法与应用专题训练试题(含答案解析).docx
-
资源ID:28219000
资源大小:582.05KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷京改版九年级数学下册第二十五章-概率的求法与应用专题训练试题(含答案解析).docx
九年级数学下册第二十五章 概率的求法与应用专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中国象棋文化历史久远在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )ABCD2、某市教委高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是( )ABCD3、盒子中装有形状、大小完全相同的3个小球,球上分别标有数字1,1,2,从中随机取出一个,其上的数字记为k1放回后再取一次,其上的数记为k2,则一次函数yk1x+b与第一象限内y的增减性一致的概率为()ABCD4、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2BabCb2Dab5、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株6、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为,则黑色球的个数为()A3B4C5D67、如图,在的正方形网格中,每个小正方形的边长都为1,已有两个小正方形被涂黑,再将图中剩余的编号的小正方形中任意一个涂黑,则所得图案是中心对称图形的概率是( )ABCD8、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD9、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )A0.2B0.3C0.4D0.510、下列说法中,正确的是( )A“射击运动员射击一次,命中靶心”是必然事件B事件发生的可能性越大,它的概率越接近1C某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是_2、 “熊猫蛋糕店”推出“熊猫不走”的游戏,凡是订购蛋糕者,可玩一次丢骰子游戏:丢一枚质地均匀、六个面分别刻有1到6点数的正方体骰子两次,若两次正面朝上点数之和大于7,可领取蛋糕店准备的熊猫玩偶,那么订购者获得熊猫玩偶的概率为_3、小张、小王和小李三人相约去参加“抗疫情党员志愿者进社区服务”活动,现在有A、B、C三个社区可供随机选择,他们三人恰好进入同一社区的概率是_4、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为_5、从这四个数中选一个数,选出的这个数是无理数的概率为_三、解答题(5小题,每小题10分,共计50分)1、有四张大小、质地都相同的不透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率2、现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小华获胜;若颜色不同,则小林获胜请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平,如果不公平,谁获胜的机会大3、今年月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图请回答下列问题(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的、五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中、两位患者的概率4、甲、乙两个家庭有各自的生育规划,假定生男生女的概率一样(1)甲家庭已有一个男孩,准备再生一个孩子,则第2个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生2个孩子,用列表或画树状图的方法求至少有一个孩子是女孩的概率5、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同)现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率-参考答案-一、单选题1、C【分析】用“-”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案【详解】解:观察“馬”移动一次能够到达的所有位置,即用“”标记的有8处,位于“-”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“-”上方的概率是,故选:C【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、A【分析】利用列表法列举所有的可能性,再由当心低温的图片为轴对称图形得到两张卡片的正面图案中有一张是轴对称图形的有6种,根据公式计算即可求出概率【详解】解:由题意知,当心低温的图片为轴对称图形,列表为:当心水灾1当心山体滑坡2当心低温3当心雷击4当心水灾11,21,31,4当心山体滑坡22,12,32,4当心低温33,13,23,4当心雷击44,14,24,3共有12种等可能的情况,其中两张卡片的正面图案中有一张是轴对称图形的有6种,两张卡片的正面图案中有一张是轴对称图形的概率是=,故选:A【点睛】此题考查了列举法求事件的概率,正确判断轴对称图形,正确列举出所有不同情况是解题的关键3、B【分析】分别计算所有情况数及满足条件的情况数,代入概率计算公式,可得答案【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为,放回后再取一次,其上的数记为,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),一次函数yk1x+b与第一象限内y的增减性一致的有:(-1,1),(-1,2),一次函数yk1x+b与第一象限内y的增减性一致的概率为故选B【点睛】此题考查概率计算公式,判断一次函数与反比例函数的增减性,解题关键在于列出所有可能出现的情况4、B【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高5、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键6、C【分析】根据取到黄球的概率求出黄球个数,总数减去红黄球个数,即可得到黑球个数【详解】根据题意可求得黄球个数为:15×=6个,所以黑球个数为:15-6-4=5个,故选:C【点睛】本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键7、D【分析】根据中心对称图形的特点进行判断即可;【详解】选择一个正方形涂黑,使得3个涂黑的正方形组成中心对称图形,选择的位置只有在标号2的位置,所以选择的位置共有1处,其概率=,故选:D【点睛】考查了概率公式的知识,解题的关键是了解中心对称图形的定义及概率的求法,难度不大8、D【分析】直接利用概率公式求出即可【详解】解:共四名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比9、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定【详解】解:“陆地”部分对应的圆心角是108°,“陆地”部分占地球总面积的比例为:108÷360,宇宙中一块陨石落在地球上,落在陆地的概率是0.3,故选B【点睛】此题主要考查了几何概率,以及扇形统计图用到的知识点为:概率=相应的面积与总面积之比10、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确故选择B【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键二、填空题1、13【分析】总数量乘以摸到红球的频率的稳定值即可【详解】解:根据题意知,布袋中红球的个数大约是20×0.6513,故答案为:13【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率2、【分析】根据题意列出表格或画出树状图,表示出所有可能的情况,再找到符合题意的情况,最后利用概率公式计算即可【详解】根据题意可列表格如下:12345611+1=21+2=31+3=41+4=51+5=61+6=722+1=32+2=42+3=52+4=62+5=72+6=833+1=43+2=53+3=63+4=73+5=83+6=944+1=54+2=64+3=74+4=84+5=94+6=1055+1=65+2=75+3=85+4=95+5=105+6=1166+1=76+2=86+3=96+4=106+5=116+6=12根据表格可知共有36种可能的情况,其中两次正面朝上点数之和大于7的情况有15种,所以订购者获得熊猫玩偶的概率为故答案为【点睛】本题考查利用列表法或画树状图法求概率根据题意正确的列出表格或画出树状图是解答本题的关键3、【分析】根据题意画树状图展示所有27种等可能的结果数,找出三人恰好进入同一社区的结果数,然后根据概率公式求解即可【详解】解:画树状图如图:共有27种等可能的结果数,其中三人恰好选择同一社区的结果为3种,两人恰好选择同一社区的概率故答案为:【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率4、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1故所求的概率为P=;故答案为:【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题5、【分析】确定无理数的个数,利用概率公式计算【详解】解:这四个数中无理数有,选出的这个数是无理数的概率为,故答案为:【点睛】此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键三、解答题1、【分析】根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案【详解】解:根据题意画图如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比2、不公平,小林获胜的机会大【分析】根据题意列出图表得出所有等可能的结果数和颜色相同和不同的结果数,然后根据概率公式求出各自的概率,再进行比较即可得出这个游戏是否公平【详解】解:列表如下:由上表或可知,一共有9种等可能的结果,其中颜色相同的结果有4种,颜色不同的结果有5种P(颜色相同)=,P(颜色不同)=,这个游戏规则对双方不公平,小林获胜的机会大【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比3、(1)160人;(2)100万元;(3)【分析】(1)根据扇形统计图中轻症患者的人数所占的百分比乘以总人数即可求得;(2)根据统计图中危重症患者的人数所占的百分比乘以总人数再乘以人均治疗费即可求得;(3)根据列表求概率即可【详解】解:(1)轻症患者的人数(人; (2)该市为治疗危重症患者共花费钱数(万元); (3)列表得:由列表格,可知:共有20种等可能的结果,恰好选中、患者概率的有2种情况,(恰好选中、【点睛】本题考查了扇形统计图和条形统计图信息关联,列表法求概率,从统计图中获取信息是解题的关键4、(1);(2)【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解【详解】解:(1)第二个孩子是女孩的概率=;故答案为:;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率5、两次摸出的都是红球的概率为【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:根据题意,画树状图如下:共有12种结果,并且每种结果出现的可能性相同,符合题意的结果有2种,所以(两次摸出的都是红球).【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比