精品解析2022年人教版九年级数学下册第二十七章-相似难点解析试卷(无超纲带解析).docx
-
资源ID:28219220
资源大小:701.50KB
全文页数:35页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十七章-相似难点解析试卷(无超纲带解析).docx
人教版九年级数学下册第二十七章-相似难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD2、在ABC中,ABAC,A36°,BD平分ABC,交AC于点DBC8,则AC()A44B44C16D123、如图,若双曲线y与边长为5的等边AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为( )A2BC2D4、如图,在ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下列结论中正确的是( )ABCD5、如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB4,CD12,那么EF的长是()A2B2.5C2.8D36、在比例尺为1:5000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为 ( )A500 cmB125mC1250 cmD1250 m7、如图,H是平行四边形ABCD的边AD上一点,且,BH与AC相交于点K,那么AK:KC等于( )A1:1B1:2C1:3D1:48、下列四个命题中正确的是( )A菱形都相似;B等腰三角形都相似;C两边及其中一边上的中线对应成比例的两三角形相似;D两边对应成比例,且有一个角对应相等的两三角形相似9、如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()ABCD10、已知:矩形OABC矩形OA'BC,B(10,5),AA'1,则CC的长是()A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形中,为上一点,且,连接、交于点,过点作于点,则的长为_2、如图,已知四边形内接于,半径,对角线AC、BD交于E点,且,则_3、一块材料形状是RtABC,C=90°量得边AC=6cm,AB =10cm,用它来加工一个正方形零件,使正方形的至少一边在RtABC的边上,其余顶点在其它边上,则这个正方形零件的边长为:_4、如图,在矩形ABCD中,AB30,BC40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F若PDF为直角三角形,则PD的长为_5、如图,将矩形沿对折,点落在处,点落在边上的处,与相交于点,若,则周长的大小为_三、解答题(5小题,每小题10分,共计50分)1、如图,如果直线/,那么的面积和的面积是相等的请你对上述的结论加以证明【方法操究】如图,在中,点D、E分别在边AB、AC上,/,点F在边BC上,连结DF、EF求证:【拓展应用】如图,在中,D、E分别在边AB、AC上,在线段DE上取一点F(点F不与点D、E重合),连结AF并延长交BC于点G点M、N在线段BC上,且,若,则_2、例2如图,在ABC中,D、E分别是边BC、AB的中点,AD、CE相交于点G,求证:证明:连结ED请根据教材提示,结合图,写出完整的证明过程【结论应用】如图,在ABC中,D、F分别是边BC、AB的中点,AD、CF相交于点G,GEAC交BC于点E,则DE:BC 3、如图,在等边三角形ABC中,点D,E分别在BC,AB上,且ADE60°求证:ADCDEB4、如图,四边形中,平分,为的中点(1)求证:;(2)求证:;(3)若,求的值5、如图,在平面直角坐标系中,是坐标原点(1)画出以点为旋转中心,将OBC顺时针旋转90°后的三角形(2)在轴的左侧将放大到原来的两倍(即新图与原图的相似比为2:1),画出新图形O,并写出的坐标-参考答案-一、单选题1、C【解析】【分析】过点作于点,设与轴交于点,根据题意, ,求得,进而可得,即,设则,根据面积为120求得的值,点A、E同时在反比例函数的图象上,表示出,则,即 ,即可求得的值【详解】解:如图,过点作于点,设与轴交于点,直线的解析式为,令,令,设则在中,四边形是矩形,矩形的面积为120,即解得根据题意,点A、E同时在反比例函数的图象上,设,则,即 即可故选C【点睛】本题考查了反比例函数与几何图形,相似三角形的性质与判定,一次函数与坐标轴交点问题,矩形的性质,熟练运用以上知识是解题的关键2、A【解析】【分析】根据两角对应相等,判定两个三角形相似再用相似三角形对应边的比相等进行计算求出AC的长【详解】解:AB=AC,A=36°,ABC=C=72°,BD平分ABC,ABD=DBC=36°,BDC=ABD+A=72°,BDC=C=72°,AD=BD=BC=8A=DBC=36°,C公共角,ABCBDC,即,整理得:AC2-8AC-64=0,解方程得:AC=4+4,或AC=4-4(舍去),故选:A【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC的长3、D【解析】【分析】过点C作CEOB于点E,过点D作DFOB于点F,则OECBFD,由OC=3BD,得到OE=3BF,设BF=x,得到点C和点D的坐标,然后利用反比例函数图象上点的坐标特征列出方程,求得x的值,然后得到实数k的值【详解】解:过点C作CEOB于点E,过点D作DFOB于点F,则OEC=BFD=90°,AOB是等边三角形,COE=DBF=60°,OECBFD,OE:BF=OC:BD,OC=3BD,OE=3BF,设BF=x,则OE=3x,CE=OE=3x,DF=BF=x,C(3x,3x),OF=OB-BF=5-x,D(5-x,x),点C和点D在反比例函数图象上,k=3x3x=(5-x)x,解得:x=0(舍)或x=,k=故选:D【点睛】本题考查了等边三角形的性质、相似三角形的性质和判定、反比例函数图象上点的坐标特征,解题的关键是通过OC=3BD和边长为5表示出点C和点D的坐标4、D【解析】【分析】根据三角形的中位线的性质和相似三角形的判定和性质定理即可得到结论【详解】解:点D,E分别是AC和BC的中点,DEBC,DEFBFA,故A选项错误;故B选项错误;DEFBAF,故C选项错误; D为AC的中点,AD=CD ,故D选项正确;故选:D【点睛】本题考查了三角形的中位线的性质,相似三角形的判定和性质,正确的识别图形是解题的关键5、D【解析】【分析】根据相似三角形的判定得出DEFDAB,BFEBDC,根据相似得出比例式,求出,代入求出即可【详解】解:AB、CD、EF都与BD垂直,ABEFCD,DEFDAB,BFEBDC,AB=4,CD=12,EF=3,故选:D【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键6、D【解析】【分析】首先设这两地的实际距离是xcm,然后根据比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位【详解】解:设它的实际长度为xcm,根据题意得:,解得:x=125000,125000cm=1250m,它的实际长度为1250m故选:D【点睛】本题考查了比例尺的性质此题难度不大,解题的关键是理解题意,根据比例尺的性质列方程,注意统一单位7、C【解析】【分析】根据AH=DH求出AH:AD即AH:BC的值是1:3,再根据相似三角形对应边成比例求出AK:KC的值【详解】解:AH=DH,AH:AD=,四边形ABCD是平行四边形,AD=BC,ADBC,AH:BC=AHKCBK, 故选:C【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键8、C【解析】【分析】根据三角形相似和相似多边形的判定解答【详解】解:A、菱形对应边成比例,但对应角不一定相等,所以所有的菱形不一定都相似,本选项说法错误;B、等腰三角形,各内角的值不确定,故无法证明三角形相似,故本选项错误;C、两边及其中一边上的中线对应成比例的两三角形相似,故本选项正确;D、两边对应成比例,必须夹角相等才能判定三角形相似,故本选项错误故选:C【点睛】本题考查了命题与定理的知识,掌握相似多边形的判定定理是解题的关键9、C【解析】【分析】可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【详解】解:根据勾股定理,AC,BC,所以,夹直角的两边的比为2,观各选项,只有C选项三角形符合,与所给图形的三角形相似故选:C【点睛】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键10、B【解析】【分析】根据坐标与图形性质求出OA'=5,进而得出矩形OABC与矩形OA'B'C'的相似比为4:5,计算即可【详解】解:点B的坐标为(10,5),AA'=1,OA'=5,OA=4,矩形OABC与矩形OA'B'C'的相似比为4:5,OC:OC'=4:5,OC=8,CC'=10-8=2,故选:B【点睛】本题考查了坐标与图形性质,正确求出矩形OABC与矩形OA'B'C'的相似比是解题的关键二、填空题1、4【解析】【分析】过点作,根据菱形的面积和边长求得,则,可得,可得,根据菱形的性质可得,进而证明,列出比例式求得,进而可得,代入即可求得的长【详解】解:如图,过点作,四边形是菱形,故答案为:【点睛】本题考查了相似三角形的性质与判定,菱形的性质,掌握相似三角形的性质与判定是解题的关键2、【解析】【分析】连接BO并延长交AD于点F,连接OD,然后根据三角形的相似可以求得CD的长,然后根据勾股定理可以求得AD的长【详解】解:连接BO交AD于点F,连接OD,BABD,OAOD,BF是线段AD的垂直平分线,BFAD,AC是O的直径,ADC90°,即ADDC,BFCD,BOEDCE,AO6,EC2,OB6,OC6,OE4,解得,CD3,在RtADC中,ADC90°,AC12,CD3,AD,故答案为:【点睛】本题考查相似三角形的判定与性质,圆内接四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理解答3、或【解析】【分析】分正方形的边长在直角边上和斜边上两种情况讨论,根据相似三角形的性质与判定即可求得正方形的边长【详解】解:RtABC,C=90°,AC=6cm,AB =10cm,如图,设正方形的边长为,则 四边形是正方形,即解得(2)如图,设正方形的边长为四边形是正方形,在上即四边形是正方形,又又, 即即解得综上所述,正方形的边长为:或故答案为:或【点睛】本题考查了正方形的性质,勾股定理,相似三角形的性质与判定,分类讨论是解题的关键4、5或【解析】【分析】分情况进行讨论,当DPF=90°时,过点O作OHAD于H,先证DHODAB,得到,求出,证明HOP=HPO=45°,得到OH=PH=15,则PD=HD-PH=5;当PFD=90°时,先求出,得到,从而得到DAO=ODA;证明OFEBAD,推出,则,最后证明PDFBDA,则【详解】解:如图1所示,当DPF=90°时,过点O作OHAD于H,HPF=90°,四边形ABCD是矩形,BD=2OD,BAD=OHD=90°,AD=BC=40,OHAB,DHODAB,由折叠的性质可得:,HOP=45°,HOP=HPO=45°,OH=PH=15,PD=HD-PH=5;如图2所示,当PFD=90°时,OFE=90°,四边形ABCD是矩形,BCD=90°,CD=AB=30, ,DAO=ODA,由折叠的性质可知:AO=EO=25,PEO=DAO=ODA,又OFE=BAD=90°,OFEBAD,PFD=BAD,PDF=BDA,PDFBDA,综上所述,当PDF为直角三角形,则PD的长为5或,故答案为:5或【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件5、8【解析】【分析】设,则,通过勾股定理即可求出值,再根据同角的余角互补可得出,从而得出,根据相似三角形的周长比等于对应比即可求出结论【详解】解:设AH=a,则DH=AD-AH=8-a,在RtAEH中,EAH=90°,AE=4,AH=a,EH=DH=8-a,EH2=AE2+AH2,即(8-a)2=42+a2,解得:a=3BFE+BEF=90°,BEF+AEH=90°,BFE=AEH又EAH=FBE=90°,EBFHAE,CHAE=AE+EH+AH=AE+AD=12,CEBF=CHAE=8故答案为:8【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出EBFHAE三、解答题1、【教材呈现】见解析;【方法探究】见解析;【拓展应用】24【解析】【分析】【教材呈现】过点A作AEl2于点E,过点D作DFl2于点F,利用平行线间的距离相等证明即可;【方法探究】连结BE,过点E作EHAB于点H,证ADEABC,利用相似三角形的性质和(1)的结论推理即可;【拓展应用】如图中,利用相似三角形的性质求出ADE的面积,再根据SBFM+ENC83SBDE计算即可【详解】解:【教材呈现】如图,过点A作AEl2于点E,过点D作DFl2于点F,l1/l2,AE=DFSABC=12×BC×AE,SDBC=12×BC×DF,SABC=SDBC【方法探究】如图,连结BE,过点E作EHAB于点H,ADBD=12SADE=12×AD×EH,SBDE=12×BD×EH,SBDE=2SADEDE/BC,SBDE=SFDE,ADE=ABCSFDE=2SADE,ADEABC,SABC=9SADE【拓展应用】如图中,ADAB=AEAC=37,DAE =BACADEABC,SADESABC(ADAB)2949,SABC49,SBDE9,SAFM43×2SAEF83SAEF,SENC43×2 SADF=83SADF,SBFM+SCEN=83SADE=83×9=24,故答案为24【点睛】本题属于相似三角形综合题,考查了三角形中位线定理,平行四边形的判定和性质,三角形的面积,四边形的面积等知识,解题的关键是理解题意,学会利用模型解决问题,属于中考压轴题2、(1)见解析;(2)1:6【解析】【分析】(1)连接ED,根据三角形中位线定理得到EDAC,DEAC,证明DEGACG,根据三角形相似的性质证明结论;(2)先证明DGEDAC,得到DE=13DC,由D是AD的中点,可推出DE=16BC,由此即可得到答案【详解】解:(1)如图,连接ED,D,E分别是边BC,AB的中点,DE是ABC的中位线,EDAC,DEAC,DEGACG,EGCG=DGAG=EDAC=12,(2)GEAC,DGEDAC,DEDC=DGAD=13,DE=13DC,D是AD的中点,BC=2DC,DE=16BC,DE:BC=1:6,故答案为:1:6【点睛】本题主要考查了三角形中位线定理,相似三角形的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件3、见解析【解析】【分析】根据等边三角形性质得出BC60°,根据三角形外角性质得出ADB1C160°,根据ADE60°,可得ADB260°,可证12即可【详解】证明:ABC是等边三角形,BC60°,ADB1C160°,ADE60°,ADB260°,12,ADCDEB【点睛】本题考查等边三角形性质,三角形外角性质,三角形相似判定,掌握等边三角形性质,三角形外角性质,三角形相似判定是解题关键4、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据相似三角形的判定证出,再根据相似三角形的性质即可得证;(2)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据平行线的判定即可得证;(3)先根据相似三角形的判定证出,再根据相似三角形的性质可得,由此即可得出答案【详解】证明:(1)平分,在和中,;(2),为的中点,由(1)已得:,;(3),为的中点,由(2)已证:,即,【点睛】本题考查了相似三角形的判定与性质、平行线的判定等知识点,熟练掌握相似三角形的判定与性质是解题关键5、(1)见解析;(2)见解析,B2(-6,2),C2(-4,-2)【解析】【分析】(1)根据旋转的性质画出B、C顺时针旋转90°后的对应点,顺次连接即可;(2)根据位似的性质画出图形,利用点的位置写出坐标即可【详解】解:(1)如图所示,OBC就是所求三角形;(2)如图所示,O就是所求三角形;点B2、C2的坐标为:B2(-6,2),C2(-4,-2)【点睛】此题主要考查了位似变换和旋转作图,正确得出对应点位置是解题关键