精品试卷北师大版九年级数学下册第一章直角三角形的边角关系同步训练试题(无超纲).docx
-
资源ID:28219464
资源大小:662.12KB
全文页数:33页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系同步训练试题(无超纲).docx
九年级数学下册第一章直角三角形的边角关系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在直角ABC中,AC2,则tanA的值为( )ABCD2、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD3、在RtABC中,C90°,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB4、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD5、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米若栏杆的旋转角,则栏杆A端升高的高度为( )A米B米C米D米6、等腰三角形的底边长,周长,则底角的正切值为( )ABCD7、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,ACB46°,则小河宽AB为多少米()A50sin46°B50cos46°C50tan46°D50tan44°8、如图,等腰RtABC中,C90°,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD29、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD10、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线yx+b与y轴交于点A,与双曲线y在第三象限交于B、C两点,且ABAC16下列等边三角形OD1E1,E1D2E2,E2D3E3,的边OE1,E1E2,E2E3,在x轴上,顶点D1,D2,D3,在该双曲线第一象限的分支上,则k_,前25个等边三角形的周长之和为_2、如图,在矩形ABCD中,点E在边AB上,BEC与FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点若BMBE,MG2,则BN的长为 _,sinAFE的值为 _3、在中,则_4、在ABC中,tanB,AB,AC,则线段BC的长为_5、_三、解答题(5小题,每小题10分,共计50分)1、解方程(1)2x2+3x3(2)计算:4sin30°+2cos45°tan60°22、计算:3、为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习,如图所示,学校在B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(3232)km处,学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是32km/h,哪组学生先到达目的地?请说明理由(结果保留根号)4、解答:(1)12021+|2|+2cos30°+(2tan60°)0(2)先化简,再求值:()×,其中a满足方程x2+5x+605、如图,在平面直角坐标系中,直线ykx3k交x轴于点B,交y轴于点A,tanABO2(1)求k的值;(2)点G为线段AB上一点,过点G作CGAB交y轴正半轴于点C,若点G的横坐标为t,线段OC的长为d,求d与t之间的函数关系式,并直接写出t的取值范围;(3)如图3,在(2)的条件下,延长GC交x轴于点D,连接BC,在BC上截取BHOC,F为第一象限内一点,且FBx轴,连接FH,点E在第三象限,连接AE、BE、DE,若CBO2FHB,AEB+OBC90°,且BF,DE,求点E坐标-参考答案-一、单选题1、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中2、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义3、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键4、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键5、C【分析】过点A作ACAB于点C,根据锐角三角函数的定义即可求出答案【详解】解:过点A作ACAB于点C,由题意可知:AO=AO=5,sin=,AC=5sin,故选:C【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型6、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键7、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义8、B【分析】过点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直角三角形,勾股定理,准确计算是解题的关键9、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90°,由翻折变换的性质得,CD=CD=4,C=C=90°,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边10、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键二、填空题1、 60 【分析】设直线yx+b与x轴交于点D,作BEy轴于E,CFy轴于F首先证明ADO60°,可得AB2BE,AC2CF,由直线yx+b与双曲线y在第一象限交于点B、C两点,可得x+b,整理得,x2+bxk0,由韦达定理得:x1x2k,即EBFCk,由此构建方程求出k即可,第二个问题分别求出第一个,第二个,第三个,第四个三角形的周长,探究规律后解决问题【详解】设直线yx+b与x轴交于点D,作BEy轴于E,CFy轴于Fyx+b,当y0时,xb,即点D的坐标为(b,0),当x0时,yb,即A点坐标为(0,b),OAb,ODb在RtAOD中,tanADO,ADO60°直线yx+b与双曲线y在第三象限交于B、C两点,x+b,整理得,x2+bxk0,由韦达定理得:x1x2k,即EBFCk,cos60°,AB2EB,同理可得:AC2FC,ABAC(2EB)(2FC)4EBFCk16,解得:k4由题意可以假设D1(m,m),m24,m2OE14,即第一个三角形的周长为12,设D2(4+n,n),(4+n)n4,解得n22,E1E244,即第二个三角形的周长为1212,设D3(4a,a),由题意(4a)a4,解得a22,即第三个三角形的周长为1212,第四个三角形的周长为1212,前25个等边三角形的周长之和12+1212+1212121212121260,故答案为4,60【点睛】本题考查了反比例函数与一次函数图象的交点问题,规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型2、4【分析】根据题意连接BF,FM,由翻折及BM=ME可得四边形BEFM为菱形,再由菱形对角线的性质可得BN=BA先证明AEFNMF得AE=NM,再证明FMNCGN可得,进而求解即可【详解】解:BM=BE,BEM=BME,ABCD,BEM=GCM,又BME=GMC,GCM=GMC,MG=GC=2,G为CD中点,CD=AB=4连接BF,FM,由翻折可得FEM=BEM,BE=EF,BM=EF,BEM=BME,FEM=BME,EFBM,四边形BEFM为平行四边形,BM=BE,四边形BEFM为菱形,EBC=EFC=90°,EFBG,BNF=90°,BF平分ABN,FA=FN,RtABFRtNBF(HL),BN=AB=4FE=FM,FA=FN,A=BNF=90°,RtAEFRtNMF(HL),AE=NM,设AE=NM=x,则BE=FM=4-x,NG=MG-NM=2-x,FMGC,FMNCGN,即,解得:(舍)或,故答案为:4;.【点睛】本题考查矩形的翻折问题和相似与全等三角形问题,解题关键是连接辅助线通过全等三角形及相似三角形的判定及性质求解3、30°【分析】根据正切定义,先求出,再求出的度数即可【详解】解:在中, , ,故答案为:【点睛】本题考查了解直角三角形,掌握三角形两锐角之间、三边之间和边角之间的关系是解题的关键4、或【分析】此题分两种情况:如图1,过作于,在中,由已知条件,设设,根据勾股定理求出的值,从而得出,在中,根据勾股定理得出,于是得到结果;如图2,过作交的延长线于,同理可得结果【详解】解:如图1,过作于,在中,设,在中,;如图2,过作交的延长线于,在中,设,在中,;故答案为:或【点睛】本题考查锐角三角函数的定义及运用,解题的关键是掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边5、5【分析】原式分别根据绝对值,有理数的乘方,二次根式以及特殊角三角函数值化简各项后,再进行加减运算即可得到答案【详解】解:=5【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则及特殊角三角函数值是解答本题的关键三、解答题1、(1);(2)【分析】(1)利用公式法求解即可得;(2)将特殊锐角的三角函数值代入,再计算乘法,最后计算加减法即可得【详解】解:(1)化成一般形式为,此方程中的,则,即,故方程的解为;(2)原式,【点睛】本题考查了解一元二次方程、特殊角的三角函数值的混合运算,熟练掌握方程的解法和特殊角的三角函数值是解题关键2、【分析】本题涉及零指数幂、负指数幂、绝对值和特殊角的三角函数值在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:原式=1×(1)+9+2×【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算3、第二组,见解析【分析】过点B作BDAC于D,在RtBCD中证得BDCD,设BDx,则CDx,在RtABD中,BAC30°,利用三角函数定义表示出AD的长,在RtBDC中,利用三角函数表示出CD的长,由AD+CDAC列出方程问题得解【详解】解:如图,过点B作BDAC于D 依题意得,BAE45°,ABC105°,CAE15°,BAC30°,ACB45°在RtBCD中,BDC90°,ACB45°,CBD45°,CBDDCB,BDCD,设BDx,则CDx,在RtABD中,BAC30°,AB2BD2x,tan30°,ADx,在RtBDC中,BDC90°,DCB45°,sinDCB,BCx,CD+AD32+32,x+,x32,AB2x64,BC,第一组用时:64÷401.6(h);第二组用时:32(h),1.6,第二组先到达目的地,答:第一组用时1.6小时,第二组用时小时,第二组先到达目的地【点睛】本题考查解直角三角形的应用,方位角的计算,勾股定理,一元一次方程,解题的关键是学会添加常用辅助线面构造直角三角形解决问题4、(1)2(2),【分析】(1)先计算乘方、去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再解方程求出a的值,结合分式有意义的条件确定a的值,继而代入计算即可(1)解: ;(2)解:;,解得或,分式要有意义,a-20a2+2a0,且,a满足方程x2+5x+60,原式【点睛】本题主要考查了特殊角三角函数值,零指数幂,绝对值,解一元二次方程,分式的化简求值,分式有意义的条件,熟知相关知识是解题的关键5、(1)k=-2;(2)d=6-,(3)点E()【分析】(1)先求出直线ykx3k交x轴于点B(3,0),OB=3,根据三角函数求出tanABO2=,点A(0,6)利用待定系数法求即可;(2)过G作GLx轴于L,根据点G的横坐标为t,得出OL=t,BL=3-t,利用三角函数求出GL=6-2t,根据勾股定理AB=,GB=,利用线段差求出GA=AB-GB=,再求出cosOAB=,得出AC=即可;(3)作OBC的平分线交y轴于T,过O作OQBT交BC与Q,交BT于V,过B作BSAE于S,过E作EJx轴于点J,根据角平分线可得OBT=CBT=,根据CBO2FHB,得出OBT=CBT=,先证OCQHBF(ASA),得出CQ=BF=,再证OBVQBV(ASA),得出OB=QB=3,可求BC=CQ+BQ=,利用勾股定理在RtCOB中,OC=,求出d=,可证AC=OA-OC=6-=BC,再证CG为AB的垂直平分线,可证ASB为等腰直角三角形,求出SB=ABcos45°,再证EBSCBO,可求,可求OD=2OC=, 设OJ=m,JD=OD-OJ=,BJ=3+m,根据勾股定理JE2=即解得, 即可【详解】解:(1)直线ykx3k交x轴于点B,当y=0时,x=3,点B(3,0),OB=3,tanABO2=,OA=6,点A(0,6),点A在直线ykx3k上,3k=6,k=-2;(2)过G作GLx轴于L,点G的横坐标为t,OL=t,BL=3-t,tanABO2=,GL=6-2t,在RtAOB中AB=,在RtGLB中GB=,GA=AB-GB=,cosOAB=,cosOAB=cosGAC=,AC=,CO=OA-AC=6-,d=6-,d=6-,();(3)作OBC的平分线交y轴于T,过O作OQBT交BC与Q,交BT于V,过B作BSAE于S,过E作EJx轴于点J,OBT=CBT=,CBO2FHB,OBT=CBT=,BFx轴,BFy轴,OCQ=FBH,BQBT,COQ+QOB=90°,QOB+EBO=90°,COQ=TBO=FHB,在OCQ和HBF中,OCQHBF(ASA),CQ=BF=,在OBV和QBV中,OBVQBV(ASA),OB=QB=3,BC=CQ+BQ=,在RtCOB中,OC=,d=,AC=OA-OC=6-=BC,CGAB,CG为AB的垂直平分线,点S在CG上,SA=SB,BSAE,ASB为等腰直角三角形,SB=ABcos45°,AEB+OBC90°,OCB+OBC=90°,AEB=OCB,BSAE,ESB=COB=90°,EBSCBO,即,tanDCO=tanABO=,OD=2OC=,DB=OD+OB=,设OJ=m,JD=OD-OJ=,BJ=3+m,根据勾股定理JE2=即,解得,JE2=,解得,点E()【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式,锐角三角函数值,勾股定理,角平分定义,三角形完全判定与性质,三角形相似判定与性质,等腰三角形性质,线段垂直平分线性质,根据勾股定理列拓展一元一次方程,完全平方公式,本题难度大,涉及知识多,图形复杂,需滤清思路,利用辅助作出准确图形是解题关键