精品解析2022年人教版八年级数学下册第十八章-平行四边形定向训练试题.docx
-
资源ID:28220006
资源大小:636.67KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版八年级数学下册第十八章-平行四边形定向训练试题.docx
人教版八年级数学下册第十八章-平行四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则纸条的宽为( )A5cmB4.8cmC4.6cmD4cm2、菱形ABCD的周长是8cm,ABC60°,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm3、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D24、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36°B30°C27°D18°5、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD546、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90°B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC7、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80º,那么CDE的度数为( )A20ºB25ºC30ºD35º8、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D109、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是10、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,每个小正方形的边长都为1,ABC是格点三角形,点D为AC的中点,则线段BD的长为 _2、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_3、点D、E、F分别是ABC三边的中点,ABC的周长为24,则DEF的周长为_4、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm5、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知写出各点的坐标:A( , ),B( , ),C( , )(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止若的一条边与BC平行,求此时点M的坐标;若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点的坐标;若不能,请说明理由2、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分3、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF对称连结DM并延长交AE的延长线于N,求证:4、如图,四边形ABCD是平行四边形,BAC90°(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论5、已知:如图,AD是BC上的高线,CE是AB边上的中线,于G(1)若,求线段AC的长;(2)求证:-参考答案-一、单选题1、B【解析】【分析】由题意作ARBC于R,ASCD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据勾股定理求出AB,最后利用菱形ABCD的面积建立关系得出纸条的宽AR的长【详解】解:作ARBC于R,ASCD于S,连接AC、BD交于点O由题意知:ADBC,ABCD,四边形ABCD是平行四边形,两个矩形等宽,AR=AS,ARBC=ASCD,BC=CD,平行四边形ABCD是菱形,ACBD,在RtAOB中,OA=3cm,OB=4cm,AB=5cm,平行四边形ABCD是菱形,AB=BC=5cm,菱形ABCD的面积,即,解得: cm.故选:B【点睛】本题主要考查菱形的判定以及勾股定理等知识,解题的关键是掌握一组邻边相等的平行四边形是菱形以及菱形的面积等于对角线相乘的一半2、B【解析】【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60°,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法3、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半4、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键5、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键6、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90°,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.7、C【解析】【分析】依题意得出AE=AB=AD,ADE=50°,又因为B=80°故可推出ADC=80°,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80°,AE=AB=AD,在三角形AED中,AE=AD,DAE=80°,ADE=50°,又B=80°,ADC=80°,CDE=ADC-ADE=30°故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数8、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键9、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键10、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键二、填空题1、#【解析】【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:,ABC90°,点D为AC的中点,BD为AC边上的中线,BDAC,故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出ABC是直角三角形是解题的关键2、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为×105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键3、12【解析】【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答【详解】解:如图所示,D、E、F分别是AB、BC、AC的中点,ED、FE、DF为ABC中位线,DFBC,FEAB,DEAC,DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)2412故答案为:12【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半5、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键三、解答题1、(1)见解析;(2)12,0;-8,0;0,16;(3)当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【分析】(1)设,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、的长,即可得到A、B、C的坐标;(3)分当时,;当时,;得出方程,解方程即可;由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可【详解】解:(1)证明:设,则,在中,是等腰三角形;(2),A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)如图3-1所示,当MNBC时,AB=AC,ABC=ACB,MNBC,AMN=ABC,ANM=ACB,AMN=ANM,AM=AN,AM=BM,M为AB的中点,点M的坐标为(2,0);如图3-2所示,当ONBC时,同理可得,M点的坐标为(4,0);综上所述,当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;如图3-3所示,当OM=OE时,E是AC的中点,AOC=90°,此时M的坐标为(0,10);如图3-4所示,当时,此时M点与A点重合,M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EFx轴于F,OE=AE,EFOA,设,则,解得,M点的坐标为(,0);综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解2、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.3、见解析【分析】连结,由对称的性质可知,进而可证,即可得,由AON=90°,可得【详解】证明:连结,、关于对称,垂直平分,在Rt和Rt中 ,又,【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,全等三角形的判定与性质,综合性较强,有一定难度准确作出辅助线是解题的关键有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解4、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90°【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质5、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可【详解】(1),;(2)连接DE,【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键