精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(含答案解析).docx
-
资源ID:28220478
资源大小:788.05KB
全文页数:34页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数定向训练试题(含答案解析).docx
人教版九年级数学下册第二十八章-锐角三角函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A:B:C:D:2、如图,在扇形AOB中,AOB90°,以点A为圆心,OA的长为半径作交于点C,若OA2,则阴影部分的面积为()A BCD3、如图,在ABC中,C90°,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB4、计算的值等于( )AB1C3D5、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D56、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD7、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD8、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD9、如图1所示,DEF中,DEF90°,D30°,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D4810、如图,等边三角形ABC和正方形ADEF都内接于O,则AD:AB()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在以AB为直径的半圆O中,C是半圆的三等分点,点P是弧BC上一动点,连接CP,AP,作OM垂直CP交AP于N,连接BN,若AB12,则NB的最小值是_2、如图,ABC中,BAC90°,BC4,将ABC绕点C按顺时针方向旋转90°,点B的对应点落在BA的延长线上,若sinAC0.8,则AC_3、图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点E,则tanAEP_4、如图,在ABC中,I是ABC的内心,O是AB边上一点,O经过点B且与AI相切于点I,若tanBAC,则sinACB的值为 _5、正方形ABCD和正AEF都内接于O,EF与BC,CD分别相交于点G,H,求=_三、解答题(5小题,每小题10分,共计50分)1、平面直角坐标系中,过点M的O交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点,交OM的反向延长线于点N(1)求经过A、N、B三点的抛物线的解析式(2)如图,点E为(1)中抛物线的顶点,连接EN,判断直线EN与O的位置关系,并说明理由(3)如图,连接MD、BD,过点D的直线交抛物线于点P,且,直接写出直线DP的解析式2、计算、解方程:(1)(2)(3)3、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45°,CDF30°,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm4、如图,点A、B在以CD为直径的O上,且,BCD=30°(1)判断ABC的形状,并说明理由;(2)若BC=cm,求图中阴影部分的面积5、如图,建筑物上有一高为的旗杆,从D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,则建筑物的高约为多少米?(结果保留小数点后一位)(参考数据,)-参考答案-一、单选题1、A【分析】直接用勾股定理求出水平距离为12,再根据坡度等于竖直距离:水平距离求解即可【详解】解:由勾股定理得,水平距离,斜坡的坡度:,故选A【点睛】本题主要考查了坡度和勾股定理,解题的关键在于能够熟练掌握坡度的定义2、B【分析】连接OC、AC,作CDOA于D,可证AOC为等边三角形,得出OAC60°,可求CD=OD×tan60°=,可求SOAC,求出BOC30°,再求出,S扇形OAC,可得阴影部分的面积()【详解】解:连接OC、AC,作CDOA于D,OAOCAC,AOC为等边三角形,OAC60°,CDOA,CDO=90°,OD=AD=,CD=OD×tan60°=,SOAC,BOC30°,S扇形OAC,则阴影部分的面积(),故选:B【点睛】本题考查扇形面积,等边三角形判定与性质,锐角三角函数,掌握扇形面积,等边三角形判定与性质,锐角三角函数是解题关键3、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90°,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键4、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键5、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=1×5=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形6、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k21×33故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标7、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形8、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键9、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键10、B【分析】过点O作,设圆的半径为r,根据垂径定理可得OBM与ODN是直角三角形,根据三角函数值进行求解即可得到结果【详解】如图,过点O作,设圆的半径为r,OBM与ODN是直角三角形,等边三角形ABC和正方形ADEF都内接于,,,故选B【点睛】本题主要考查了圆的垂径定理知识点应用,结合等边三角形和正方形的性质,利用三角函数求解是解题的关键二、填空题1、221-23#-23+221【解析】【分析】如图,连接AC,OC证明点N在T上,运动轨迹是OC ,过点T作THAB于H求出BT,TN,可得结论【详解】解:如图,连接AC,OCC是半圆的三等分点,AOC60°,OAOC,AOC是等边三角形,作AOC的外接圆T,连接TATC,TN,TBOMPC,CMPM,NCNP,NPCNCPAOC30°,CNM60°,CNO120°,CNOOAC180°,点N在T上,运动轨迹是OC,过点T作THAB于H在RtATH中,AHOH3,TAH30°,THAHtan30°,ATTN2HN2,在RtBHT中,BTTH2+BH2=32+92=221,BNBTTN,BN221-23,BN的最小值为221-23故答案为:221-23【点睛】本题考查点与圆的位置关系,等边三角形的判定和性质,解直角三角形,轨迹等知识,解题的关键是正确寻找点N的运动轨迹,属于中考填空题中的压轴题2、5【解析】【分析】作CDBB于D,先利用旋转的性质得CBCB4,BCB90°,则可判定BCB为等腰直角三角形,可由CDBC·sinB求出CD4,然后在RtACD中利用正弦的定义求AC即可【详解】解:作CDBB于D,如图,ABC绕点C按顺时针方向旋转90°,点B对应点B落在BA的延长线上,BCBC4,BCB90°,BCB为等腰直角三角形,B=45°,在RtBCD中,CDBC·sinB=22×424,在RtACD中,sinDAC0.8,ACCD0.85故答案为:5【点睛】本题考查旋转的性质、等腰直角三角形的判定与性质、锐角三角函数,熟练掌握旋转的性质,会利用锐角三角函数解直角三角形是解答的关键3、#【解析】【分析】如图,设小正方形边长为1,根据网格特点,PQF=CBF,可证得PQBC,则QEB=ABC,即AEP=ABC,分别求出AC、BC、AB,根据勾股定理的逆定理可判断ABC是直角三角形,求出tanABC即可【详解】解:如图,设小正方形边长为1,根据网格特点,PQF=CBF=45°,PQBC,QEB=ABC,AEP=QEB,AEP=ABC,AC2+BC2=AB2,ABC是直角三角形,且ACB=90°,tanABC=,tanAEP=tanABC=,故答案为: 【点睛】本题考查网格性质、勾股定理及其逆定理、平行线的判定与性质、正切、对顶角相等,熟知网格特点,熟练掌握勾股定理及其逆定理是解答的关键4、#0.8【解析】【分析】连接OI,BI,作OEAC,可证AOD是等腰三角形,然后证明ODBC,进而ADOACB,解三角形AOD即可【详解】解:如图,连接OI并延长交AC于D,连接BI,AI与O相切,AIOD,AIOAID90°,I是ABC的内心,OAIDAI,ABICBI,AIAI,AOIADI(ASA),AOAD,OBOI,OBIOIB,OIBCBI,ODBC,ADOC,作OEAC于E,tanBAC,不妨设OE24k,AE7k,OAAD25k,DEADAE18k,OD30k,sinACB 故答案是:【点睛】本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键5、【解析】【分析】如图,连接AC、BD、OF,设O的半径是r,则OF=r,据题意可得出COF60°,进而解直角三角形求得,证明,根据相似三角形的高的比等于相似比得出答案即可【详解】解:如图,连接AC、BD、OF,CF,设O的半径是r,则OF=r,设交于点根据圆,正方形,正三角形的对称性可知是公共的对称轴,AO是EAF的平分线,OAF=60°÷2=30°,OA=OF,OFA=OAF=30°,COF=30°+30°=60°,是等边三角形FI=rsin60°=,则CO=2OI,OI=,平分,EF=, ,即则的值是故答案为:【点睛】本题考查了正多边形与圆,正多边形的半径,相似三角形的性质与判定,解直角三角形,综合运用以上知识是解题的关键三、解答题1、(1);(2)直线EN与O相切,理由见解析;(3)或【解析】【分析】(1)结合题意,根据圆和勾股定理的性质,计算得圆的半径,从而得,;根据抛物线轴对称的性质,得经过A、N、B三点的抛物线,对称轴为:;通过列二元一次方程组并求解,即可得到答案;(2)根据抛物线的性质,计算得;根据勾股定理的性质,得,;根据圆的性质,得;根据勾股定理的逆定理,通过,推导得,结合圆的切线的定义,即可得到答案;(3)结合(2)的结论,根据特殊角度三角函数的性质,得,分当点P纵坐标大于0和小于0两种情况,根据圆周角、圆心角的性质,推导得;根据含角直角三角形和勾股定理的性质,计算得点坐标,再通过待定系数法求解一次函数解析式,即可得到答案【详解】(1)O过点M O交x轴于A、B两点(点A在点B的左侧), , 经过A、N、B三点的抛物线,对称轴为: O交OM的反向延长线于点N 设经过A、N、B三点的抛物线为: 经过A、N、B三点的抛物线,对称轴为: 经过A、N、B三点的抛物线为:;(2)经过A、N、B三点的抛物线为:,且对称轴为:当时,抛物线取最小值,即 , 直线EN与O相切;(3) 如图,当点P纵坐标大于0时,直线交O于点Q,连接,过点Q作,交OB于点K , 设直线DP的解析式为: ;如图,当点P纵坐标小于0时,直线交O于点Q,连接,过点Q作,交OB于点K, 设直线DP的解析式为: ;直线DP的解析式为:或【点睛】本题考查了圆、二次函数、一次函数、勾股定理、直角三角形、轴对称、三角函数的知识;解题的关键是熟练掌握圆的对称性、圆周角、圆心角、二次函数图像、勾股定理及其逆定理、切线、特殊角度三角函数的性质,从而完成求解2、(1);(2);(3)【解析】【分析】(1)利用配方法求出方程的解;(2)利用因式分解法求出方程的解;(3)利用负指数幂法则,特殊角的三角函数值计算,化简二次根式后计算出最后的结果【详解】(1)解:x2=6x+7方程可化为即;(2)解:4(x3)2=x(x3)方程可化为:或(3)2tan45°+4sin60°2 22×1+4×2×22+【点睛】本题考查了实数的运算、解一元二次方程,结合方程的特点选择合适、简便的方法是解题的关键3、(1)(40+40)cm;(2)(20)cm【解析】【分析】(1)过点F作FGDE于点G,分别利用三角函数求出FG和DG,然后求出CD,进而求出CE,即可求出DE,最后根据AC2DE即可求出AC;(2)作AHED延长线于H,根据AHAC·sin45°求出AH即可【详解】解:(1)过点F作FGDE于点G,FGDFGC90°,在RtDGF中,CDF30°,FGFDsin30°30×15(cm),DGFDcos30°30×15(cm),在RtCGF中,DCF45°,CGFG15(cm),CDCG+DG15+15(cm),CE:CD1:3,CECD×(15+15)5+5(cm),DEEC+CD5+5+15+1520+20(cm),DEBCAB,ACAB+BC2DE2×(20+20)40+40(cm),即AC的长度为(40+40)cm(2)作AHED延长线于H,在RtAHC中,ACH45°,AHACsin45°(40+40)×20+20(cm),故答案为:(20)【点睛】本题考查了解直角三角形应用题,一般步骤为(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型(2)将实际问题中的数量关系归结为解直角三角形的问题当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形(3)寻找直角三角形,并解这个三角形4、(1)ABC是等边三角形,理由见解析;(2)()cm2【解析】【分析】(1)由垂直定义得,由垂径定理得,由三角形内角和定理得,从而可判断ABC的形状;(2)连接BO、过O作OEBC于E,由垂径定理可得出BE的长,根据圆周角定理可得出BOC的度数,在RtBOE中由锐角三角函数的定义求出OB的长,根据S阴影=S扇形-SBOC即可得出结论【详解】解:(1)ABC是等边三角形,理由如下:,BCD=30°, ABC是等边三角形;(2)连接BO,过O作OEBC于E,BC=cm,BE=EC=cm,BAC=60°,BOC=120°,BOE=60°,在RtBOE中,OB=6cm,S扇形=cm2,cm2,S阴影=cm2,答:图中阴影部分的面积是()cm2【点睛】本题考查的是圆周角定理、垂径定理及扇形的面积等相关知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键5、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用正切三角函数解直角三角形即可得【详解】解:由题意得:,是等腰直角三角形,设,则,在中,即,解得,经检验,是所列分式方程的解,且符合题意,建筑物BC的高约为24.2米,答:建筑物BC的高约为24.2米【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键