精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专题攻克试题(无超纲).docx
-
资源ID:28220555
资源大小:233.22KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专题攻克试题(无超纲).docx
初中数学七年级下册第九章不等式与不等式组专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、在数轴上表示不等式组1x3,正确的是()ABCD2、下列变形中,错误的是( )A若3a+52,则3a2-5B若,则C若,则x5D若,则3、如果ab,下列各式中正确的是( )A2021a2021bB2021a2021bCa2021b2021D2021a2021b4、若ab,则下列不等式不正确的是()A5a5bBC5a5bDa5b55、下列不等式一定成立的是( )ABCD6、设m为整数,若方程组的解x、y满足,则m的最大值是( )A4B5C6D77、有两个正数a,b,且ab,把大于等于a且小于等于b的所有数记作a,b例如,大于等于1且小于等于4的所有数记作1,4若整数m在5,15内,整数n在30,20内,那么的一切值中属于整数的个数为( )A6个B5个C4个D3个8、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )A3a2B3a2C3a2D3a29、不等式的最大整数解为( )A2B3C4D510、如果,那么下列不等式中正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_mg用法用量:口服,每天6090mg,分2-3次服规格:#贮藏:#2、a,b两个实数在数轴上的对应点如图所示:用“<”或“>”填空:(1)a_b;(2)_;(3)_0;(4)_0;(5)_;(6)_a3、若xy,且(6a)x(6a)y,则a的取值范围是 _4、不等式组的解为_5、若关于x的不等式组的整数解共有5个,则a的取值范围_三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并把其解集在数轴上表示出来2、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?3、解方程组或不等式组:(1);(2)4、小李家有一个果园,种植了一些枇杷,每年到了枇杷收获的季节,小李家都开启了线上、线下两种销售模式(1)已知小李家前年共出产4500千克枇杷,全部售出,其中线上销售量不超过线下销售量的4倍,求小李家前年线下销售枇杷至少多少千克?(2)据统计,小李家去年销售枇杷线下单价为15元/千克,销售量为1000千克;线上单价为10元/千克,销售量为2000千克由于今年枇杷产量降低,小李家销售枇杷时线下单价上涨了a%,线上销售单价上涨了结果线下销量比去年减少了200千克,线上销量比去年减少了400千克,销售总额比去年减少了1000元求a的值5、解不等式组,并把解集表示在数轴上-参考答案-一、单选题1、C【分析】把不等式组的解集在数轴上表示出来即可【详解】解:,在数轴上表示为:故选:C【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则2、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以,不等号的方向改变得到,故B符合题意;C、不等式的两边都乘以(5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题3、C【分析】根据不等式的性质即可求出答案【详解】解:A、ab,2021a2021b,故A错误;B、ab,2021a2021b,故B错误;C、ab,a2021b2021,故C正确;D、ab,2021a2021b,故D错误;故选:D【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型4、A【分析】根据不等式的基本性质逐项判断即可得【详解】解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;B、不等式两边同除以5,不改变不等号的方向,则,此项正确;C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;D、不等式两边同减去5,不改变不等号的方向,则,此项正确;故选:A【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键5、B【分析】根据不等式的性质依次判断即可【详解】解:A.当y0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x0时不成立,故该选项不符合题意;D. 当m0时不成立,故该选项不符合题意;故选:B【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键6、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把×3得:,用+得:,解得,把代入得,解得,即,解得,m为整数,m的最大值为5,故选B【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法7、B【分析】根据已知条件得出5m15,30n20,再得出的范围,即可得出整数的个数【详解】解:m在5,15内,n在30,20内,5m15,30n20,即6,的一切值中属于整数的有2,3,4,5,6,共5个;故选:B【点睛】此题考查了不等式组的应用,求出5m15和30n20是解题的关键8、C【分析】先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案【详解】解:解不等式得;解不等式得;不等式组有解,不等式组的解集是,不等式组只有4个整数解,不等式组的4个整数解是:1、0、-1、-2,故选C【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法9、B【分析】求出不等式的解集,然后找出其中最大的整数即可【详解】解:,则符合条件的最大整数为:,故选:B【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键10、A【分析】根据不等式的性质解答【详解】解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;根据不等式的性质1两边同时减去1可得到,故B选项不符合题意;根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意;故选:A【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变二、填空题1、2045【分析】根据602次服用的剂量90,603次服用的剂量90,列出两个不等式组,求出解集,再求出解集的并集即可【详解】解:设一次服用的剂量为xmg,根据题意得;602x90或603x90,解得30x45或20x30,则一次服用这种药品的剂量范围是:2045mg故答案为:2045【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键2、> < < > < < 【分析】首先观察数轴,得到b0a且|b|a|,进一步利用加减法计算方法和绝对值的意义解答即可【详解】解:(1)ab;(2)|a|b|;(3)a+b0;(4)a-b0;(5)a+ba-b;(6)aba故答案为:(1);(2);(3);(4);(5);(6)【点睛】本题考查了利用数轴、绝对值的意义以及有理数的加减法计算方法解决问题3、a6【分析】根据不等式的基本性质,发现不等式的两边都乘(6a)后,不等号的方向改变了,说明(6a)是负数,从而得出答案【详解】解:根据题意得:6a0,a6,故答案为:a6【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键4、【分析】解不等式组即可【详解】解:,解不等式得,;解不等式得,;不等式组的解集为【点睛】本题考查了解不等式组,解题关键是准确解每个不等式,正确确定不等式组的解集5、1a0【分析】先求出不等式组的解集,再根据已知条件得出1a0即可【详解】解:,解不等式,得x5,解不等式,得xa,所以不等式组的解集是ax5,关于x的不等式组的整数解共有5个,1a0,故答案为:1a0【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键三、解答题1、1.5x1,图见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可【详解】解: 解不等式3x45x1,得:x1.5,解不等式,得:x1,则不等式组的解集为1.5x1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法2、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案【解析】【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个,解得:,为正整数,该校有5种购买方案【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键3、(1);(2)【解析】【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可【详解】解:(1)由得:,将代入得,解得将代入得: 方程组的解为:;(2)解不等式组由得:,解得,由得:,解得,不等式组的解集为:【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法4、(1)线下销量至少为900千克;(2)30【解析】【分析】(1)设线下销售了千克,则线上销售了千克,根据线上销量不超过线下销量的4倍即可得出关于的一元一次不等式,解之取其中的最小值即可得出结论;(2)利用销售总额销售单价销售数量,即可得出关于的一元一次方程,进而解方程即可得出结论【详解】解:(1)设线下销售了千克,则线上销售了千克,依题意得:,解得:,x的最小值为900,答:线下销量至少为900千克(2)根据题意可得:,解得:,答:的值为30【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程5、,图见解析【解析】【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题【详解】解:由得 由得 把不等式组的解集表示在数轴上,如图,原不等式组的解为【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键