精品试卷北师大版九年级数学下册第二章二次函数必考点解析练习题(名师精选).docx
-
资源ID:28220923
资源大小:441.49KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷北师大版九年级数学下册第二章二次函数必考点解析练习题(名师精选).docx
北师大版九年级数学下册第二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 22、将二次函数用配方法化为的形式,结果为( )ABCD3、已知二次函数yax2bxc(a0)的图像如图所示,有下列5个结论:c0;abc0;abc0;2a3b>0;c4b0,你认为其中正确信息的个数有( )A2个B3个C4个D5个4、抛物线的对称轴是直线( )ABCD5、正方形的面积y与它的周长x满足的函数关系是( )A正比例函数B一次函数C二次函数D反比例函数6、已知二次函数yax22ax1(a为常数,且a0)的图象上有三点A(2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是( )Ay1y2y3By1y3y2Cy2y1y3Dy2y3y17、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD8、已知抛物线的解析式为,则这条抛物线的顶点坐标是( )ABCD9、抛物线的顶点坐标是( )A(1,2)B(1,2)C(1,2)D(1,2)10、二次函数的图象的顶点坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若二次函数在时的最小值为6,那么m的值是_2、写出一个开口向下,且对称轴在轴左侧的抛物线的表达式:_3、如图,在平面直角坐标系中,点在抛物线上,过点作轴的垂线交抛物线于另一点,点、在线段上,分别过点、作轴的垂线交抛物线于、两点,连接,若四边形是矩形,则线段的长为 _4、抛物线经过,其中现有以下结论:若,则若,则有若,对于任意实数都有若,则的取值范围是其中正确的是_(写出所有正确结论的序号)5、将抛物线向下平移3个单位长度,所得到的抛物线解析式为_三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线yx2+bx2过点A(1,m)和B(5,m),与y轴交于点C(1)求b和m的值;(2)连接AB,AB与y轴交于点D请求出:点D的坐标;ABC的面积2、为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示若设矩形小花园AB边的长为m,面积为ym2(1)求与之间的函数关系式;(2)当为何值时,小花园的面积最大?最大面积是多少?3、某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间满足一次函数关系,其图象如图所示设该商场销售这种商品每天获利(元)(1)求与之间的函数关系式(2)求与之间的函数关系式(3)该商场规定这种商品每件售价不低于进价,又不高于36元,当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?4、二次函数图象上部分点的横坐标x,纵坐标y的对应值如表:x4321012y5034305(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象;(3)当函数值y0时,对应的x的取值范围是 5、在平面直角坐标系xOy中,已知抛物线(1)求它的顶点坐标;(2)求它与x轴的交点坐标-参考答案-一、单选题1、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键2、D【分析】利用配方法,把一般式转化为顶点式即可【详解】解:,故选:D【点睛】本题考查了二次函数的一般式,顶点式,正确利用配方法是解答本题的关键,配方法方法是,先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式3、D【分析】观察图象易得,所以,因此,由此可以判定是正确的;当,由点在第二象限可以判定是正确的;当时,由点在第一象限可以判定是正确的【详解】解:抛物线开口方向向上,抛物线与轴交点在轴的下方,抛物线对称轴为直线, 是正确的, 当,而点在第二象限,是正确的,故是正确的,当时,而点在第一象限,是正确的,正确的有:,故选D【点睛】本题考查了从函数图象中获取信息的能力,解题的关键是掌握二次函数的图象和性质4、B【分析】由题意根据题干中抛物线的顶点式,可以直接写出它的对称轴,进行分析即可得出答案【详解】抛物线的对称轴是直线,故选:B【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质进行分析解答5、C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案【详解】解:正方形的周长为x,正方形的边长为,正方形的面积;故选:C【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式6、D【分析】首先计算出抛物线的对称轴,然后结合开口方向,以及各点和对称轴的远近判断对应函数值大小即可【详解】解:由题意,抛物线对称轴为:直线,a0,则该抛物线开口向上,离对称轴越近的点,对应的函数值越小,越远的点,对应函数值越大,故选:D【点睛】本题考查比较二次函数值的大小,当抛物线开口向上时,离对称轴越近的点,对应的函数值越小,越远的点,对应的函数值越大;相反,当抛物线开口向下时,离对称轴越近的点,对应的函数值越大,越远的点,对应的函数值越小;掌握此方法是解题关键7、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”8、B【分析】利用抛物线解析式即可求得答案【详解】解:,抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh9、B【分析】根据二次函数顶点式的特征计算即可;【详解】抛物线,顶点坐标为(1,2);故选B【点睛】本题主要考查了二次函数图象顶点式的图象性质,准确分析计算是解题的关键10、D【分析】直接根据二次函数的顶点式写出顶点坐标即可【详解】解:抛物线解析式为 , 其顶点坐标为(3,1),故选D【点睛】本题考查了二次函数顶点式的性质,正确理解知识点是解题的关键二、填空题1、或【分析】由题意易得二次函数的对称轴为直线,则有该二次函数的最小值为4,然后由题意可分当m0时,则有y随x的增大而减小,当m1时,则y随x的增大而增大,进而根据函数的性质可进行求解【详解】解:由二次函数可知对称轴为直线,当x=1时,二次函数有最小值,最小值为,二次函数在时的最小值为6,然后可分当m+11时,即m0,则有y随x的增大而减小,当x=m+1时,函数有最小值,即为,解得:(正根舍去),当m1时,则y随x的增大而增大,当x=m时,函数有最小值,即为,解得:(负根舍去),综上所示:m的值是或;故答案为或【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键2、y=-x2-2x+1【分析】根据二次函数的性质写出一个符合的即可【详解】解:抛物线的解析式为y=-x2-2x+1,故答案为:y=-x2-2x+1【点睛】本题考查了二次函数的性质,能熟记二次函数的性质是解此题的关键,此题是一道开放型的题目,答案不唯一3、2【分析】利用待定系数法求出抛物线解析式,设点横坐标为,点C(m,4),根据四边形是矩形,可证EFx轴,F、E两点纵坐标相同,根据、两点在抛物线上,得出F,E关于y轴对称,可证点C与点D关于y轴对称,得出点D的坐标为(-m,4)根据,求出点坐标为,根据函数解析式列方程,解方程即可【详解】解:把代入中得,解得,设点横坐标为,点C(m,4),四边形是矩形,EFCD即EFAB,过点A作轴的垂线交抛物线于另一点,ABx轴,EFx轴,F、E两点纵坐标相同,、两点在抛物线上,F,E关于y轴对称,点C与点D关于y轴对称,点D的坐标为(-m,4),则,点坐标为,解得(舍或故答案为:2【点睛】本题考查待定系数法求抛物线解析式,矩形性质,轴对称判定与性质,根据矩形性质得出FEx轴,利用点F的坐标特征列方程是解题关键4、【分析】由抛物线的对称性与函数值的情况进行推理,进而对各结论进行判断【详解】解:抛物线经过,其中对称轴x=-m=-故为抛物线的顶点,时,为对称点,则,故正确;若,则对称轴为x=2,函数开口方向不确定大小不确定;故错误;若,函数开口向上,故对于任意实数都有,正确;当时,m=1,函数开口方向向下,则的取值范围是m1,故错误;故答案为:【点睛】主要考查二次函数的图象与性质,二次函数图象上点的坐标特征,解题的关键是熟知二次函数的图象与性质5、#【分析】根据抛物线的平移规律:上加下减,左加右减解答即可【详解】解:将抛物线向下平移3个单位长度,所得到的抛物线解析式为故答案为:【点睛】本题考查了抛物线的平移,掌握平移规律是解题的关键三、解答题1、(1)b=-4,m=3;(2)点D的坐标为(0,3);15【分析】(1)根据点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,可以得到b的值,即可得到函数解析式,把A(-1,m)代入解析式即可求得m的值;(2)由m的值即可求得点D的坐标;求得C的坐标,再根据三角形面积公式即可求得【详解】解:(1)点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,解得,b=-4,抛物线解析式为y=x2-4x-2,把A(-1,m)代入得,m=1+4-2=3;(2)m=3,点D的坐标为(0,3);由y=x2-4x-2可知,抛物线与y轴交点C的坐标为(0,-2),OC=2,A(-1,4)和B(5,4),AB=6,SABC=×6×(2+3)=15【点睛】本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答2、(1)(1).();(2)当x为时,小花园的面积最大,最大面积是【分析】(1)首先根据矩形的性质,由花园的AB边长为x m,可得BC=(40-2x)m,然后根据矩形面积即可求得y与x之间的函数关系式,又由墙长25m,即可求得自变量的x的范围;(2)用配方法求最大值解答问题【详解】解:(1)四边形ABCD是矩形,AB=CD,AD=BC,AB=x m,BC=(40-2x)m,花园的面积为:y=ABBC=x(40-2x)=-2x2+40x,40-2x25,x+x<40,x7.5,x<20,7.5x<20,y与x之间的函数关系式为:y=-2x2+40x(7.5x<20);(2) ,() 当时,答:当x为10m时,小花园的面积最大,最大面积是200m2【点睛】本题考查了二次函数的应用、一元二次方程的应用,解题的关键是明确题意,列出函数解析式3、(1);(2);(3)当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.【分析】(1)设与之间的函数关系式为,然后运用待定系数法解答即可;(2)根据“每件利润×销售量=总利润”列出w与x之间的函数关系式即可;(3)根据(2)w与x之间的函数关系式,然后利用二次函数性质求最值即可.【详解】解:(1)设与之间的函数关系式为,由所给函数图象可知:,解得,故与的函数关系式为;(2),即与之间的函数关系式为;(3),当时,取得最大值,.答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.【点睛】本题主要考查一次函数的应用以及二次函数的应用,掌握待定系数法求函数解析式、理解题意确定相等关系并据此列出函数解析式是解答本题的关键.4、(1);(2)见解析;(3)-3<x<1【分析】(1)设二次函数解析式为,利用待定系数法求解;(2)利用描点法画图即可;(3)利用表格及图象解答即可【详解】解:(1)设二次函数解析式为,由表格可知,二次函数图象经过点(-3,0),(0,-3),(1,0),则,解得,这个二次函数的表达式为;(2)如图:;(3)由表格可知,当y=0时,x=-3及x=1;由图象知,函数图象的开口向上,当函数值y0时,对应的x的取值范围是-3<x<1,故答案为:-3<x<1【点睛】此题考查了待定系数法求函数解析式,画抛物线,由函数值求自变量的取值范围,正确掌握各知识点是解题的关键5、(1);(2)【分析】(1)把抛物线化为顶点式即可;(2)令 则再利用因式分解法解一元二次方程即可.【详解】解:(1)所以抛物线的顶点坐标为: (2)令 则 或 解得: 所以抛物线与x轴的交点坐标为:【点睛】本题考查的是求解抛物线的顶点坐标,抛物线与轴的交点坐标,掌握“把抛物线化为顶点式以及把代入抛物线求解与x轴的交点坐标”是解本题的关键.