精品解析2022年人教版九年级数学下册第二十六章-反比例函数专项测试试题(无超纲).docx
-
资源ID:28221530
资源大小:663.98KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十六章-反比例函数专项测试试题(无超纲).docx
人教版九年级数学下册第二十六章-反比例函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是_ABCD2、已知函数ykx(k0)中y随x的增大而增大,那么它和函数在同一直角坐标平面内的大致图象可能是()ABCD3、反比例函数经过点(2,1),则下列说法错误的是()A点(1,2)在函数图象上B函数图象分布在第一、三象限Cy随x的增大而减小D当y4时,0x4、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S25、对于反比例函数,下列说法正确的是( )A图象分布在第一、三象限内B图象经过点(1,2021)C当x0时,y随x的增大而增大D若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1x2,则y1y26、对于反比例函数y,下列说法不正确的是()A这个函数的图象分布在第一、三象限B点(1,4)在这个函数图象上C这个函数的图象既是轴对称图形又是中心对称图形D当x0时,y随x的增大而增大7、在反比例函数图象上有两点A(,)B(,),0,则m的取值范围是( )AmBmCmDm8、如图,曲线是顶点为与轴交于点的抛物线的部分,曲线是双曲线的一部分,由点开始不断重复“”的过程,形成一组波浪线,点与点均在该波浪线上,过点、分别作轴的垂线,垂是为,连,则四边形的面积为( )A72B36C16D99、如图,P为反比例函数y的图象上一点,PAx轴于点A,PAO的面积为3,则k的值是()A3B6C3D610、如图,反比例函数y(x0)与一次函数yx4的图象交于A、B两点的横坐标分别为3,1则关于x的不等式x4(x0)的解集为()Ax3B3x1C1x0Dx3或1x0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线yx+m与双曲线相交于A,B两点,直线yx与双曲线相交于C,D两点,则四边形ACBD面积的最小值为_2、若反比例函数的图象经过点A(-2,4)和点B(8,a),则a的值为_3、如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90°,点D在AC上,若反比例函数在第一象限的图象经过点B,则BAD与OAC的面积之差为_4、如图,在中,点C在边OA上,的圆心P在线段BC上,且与边AB,AO都相切若反比例函数的图像经过圆心P,则P点的坐标为_, _5、反比例函数的图像如图所示,则k的值可能是_三、解答题(5小题,每小题10分,共计50分)1、某面粉车间安装了粉尘检测仪,工人加工4 h后粉尘检测仪开始报警,工人立即停止加工并对车间进行自然通风除尘如图,线段DE表示工人加工时粉尘检测仪显示的数据与时间x(h)之间的函数关系(),反比例函数对应曲线EF,表示通风除尘期间粉尘检测仪显示的数据与时间x(h)之间的函数关系根据图像解答下列问题:(1)求粉尘检测仪在工人加工前显示的数据(2)当车间内粉尘指数在50100之间时,室内空气质量为良,求该车间空气质量保持良的时间2、根据函数表达式y,画出它的图象,并描述它的图象具有哪些特征3、菱形ABCD的边AD在x轴上,C点在y轴上,B点在第一象限对角线BD、AC相交于H,AC2,BD4,双曲线y过点H,交AB边于点E,直线AB的解析式为ymx+n(1)求双曲线的解析式及直线AB的解析式;(2)求双曲线y与直线AB:ymx+n的交点横坐标并根据图象直接写出不等式mx+n的解集4、已知y与2x3成反比例,且当x2时,y4,求y关于x的函数解析式5、如图,反比例函数的图象与一次函数的图象交于点、点(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)直接写出一次函数值大于反比例函数值的自变量的取值范围-参考答案-一、单选题1、B【分析】设出点P的坐标,阴影部分面积等于点P的横纵坐标的积,把相关数值代入即可【详解】解:设点P的坐标为(x,y)P(x,y)在反比例函数的图象,kxy,|xy|3,点P在第二象限,k3,y;故选:B【点睛】本题考查反比例函数中k的几何意义,用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数比例系数;若反比例函数的图象在二、四象限,比例系数应小于0,还应注意若反比例函数只有一个图象的分支,自变量的取值也应只表现一个象限的取值2、D【分析】首先由“ykx(k0)中y随x的增大而增大”判定k0,然后根据k的符号来判断函数所在的象限【详解】解:函数ykx(k0)中y随x的增大而增大,k0,该函数图象经过第一、三象限;函数的图象经过第一、三象限;故选:D【点睛】本题考查反比例函数与一次函数的图象特点:反比例函数的图象是双曲线;当k0时,它的两个分支分别位于第一、三象限;当k0时,它的两个分支分别位于第二、四象限3、C【分析】利用待定系数法求得k的值,再利用反比例函数图象的性质对每个选项进行逐一判断即可【详解】解:反比例函数经过点(2,1),k21×(2)2,故A正确;k20,双曲线y分布在第一、三象限,故B选项正确;当k20时,反比例函数y在每一个象限内y随x的增大而减小,故C选项错误,当y4时,0x,D选项正确,综上,说法错误的是C,故选:C【点睛】本题考查了反比例函数图象上点的坐标的特征,待定系数法确定函数的解析式,反比例函数图象的性质利用待定系数法求得k的值是解题的关键4、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键5、C【分析】根据反比例函数解析式为,即可得到反比例函数图像经过二、四象限,且在每个象限内y随x增大而增大,由此即可判断,A、C、D;当x=1时,y=-2021,即可判断B【详解】解:反比例函数解析式为,反比例函数图像经过二、四象限,且在每个象限内y随x增大而增大,故A选项不符合题意;当x0时,y随x的增大而增大,故C选项符合题意;当x=1时,y=-2021,图象不经过点(1,2021),故B选项不符合题意;若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1x2,不一定y1y2,如A、B都在第四象限时,此时y1y2,故D选项不符合题意;故选C【点睛】本题主要考查了反比例函数图像的性质,熟知反比例函数图像的性质是解题的关键6、D【分析】根据反比例函数的性质:当k0,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小进行分析即可【详解】解:A、反比例函数中的k40,双曲线的两支分别位于第一、三象限,正确,不符合题意;B、点(1,4)在它的图象上,正确,不符合题意;C、反比例函数的图象既是轴对称图形又是中心对称图形,正确,不符合题意;D、反比例函数y中的k40,其在每一象限内y随x的增大而减小,不正确,符合题意;故选:D【点睛】本题考查反比例函数图象与性质,关键掌握以下性质:反比例函数(k0),当k0,反比例函数图象在一、三象限,每个象限内,y随x的增大而减小;当k0,反比例函数图象在第二、四象限内,每个象限内,y随x的增大而增大7、B【分析】对于反比例函数,由0,则A(,)B(,)在两个不同的象限,结合,可得A(,)在第三象限,B(,)在第一象限,从而可得13m0,解不等式可得答案.【详解】解: 反比例函数图象上有两点A(,)B(,),0, 13m0,解得: 故选B【点睛】本题考查的是反比例函数的图象与性质,数形结合是解本题的关键.8、B【分析】根据二次函数顶点坐标求出点B,从而求出反比例函数解析式,再确定点P与点Q位置,由直角梯形面积公式即可求出答案【详解】如图,过点B作x轴的垂线交于,取DE的中点,过点作x轴的垂线交于,把代入中得:,反比例函数解析式为,由图可知,每经过6为一次循环,点P离x轴的距离与点B离x轴的距离相同,点Q离x轴距离与点离x轴距离相同,令代入中得:,故选:B【点睛】本题考查二次函数与反比例函数的综合应用,根据题意找出循环周期是解题的关键9、D【分析】根据反比例函数比例系数k的几何意义得到SOAP|k|3,然后根据反比例函数的性质确定k的值【详解】解:PAx轴于点A,SOAP|k|3,而k0,k6故选:D【点睛】本题考查了反比例函数系数k的几何意义,属于基本题目,要注意图象在第二、四象限时,k<010、B【分析】关于x的不等式x4(x0)成立,则当x0时,一次函数的图象在反比例函数图象的上方,再结合函数图象可得答案.【详解】解:反比例函数y(x0)与一次函数yx4的图象交于A、B两点的横坐标分别为3,1关于x的不等式x4(x0)成立,则当x0时,一次函数的图象在反比例函数图象的上方,观察图象可知,当3x1时,满足条件,关于x的不等式x4(x0)的解集为:3x1故选B【点睛】本题考查了反比例函数与一次函数的交点问题,函数的图象的应用,主要考查学生观察图象的能力,用了数形结合思想二、填空题1、【解析】【分析】首先联立直线yx与双曲线求出点C和点D的坐标,然后求出CD的长度,根据题意可得当直线yx+m经过原点时四边形ACBD面积最小,求出此时A点和B点的坐标,进而可求出四边形ACBD面积的最小值【详解】解:直线yx与双曲线相交于C,D两点,联立得:,即,解得:,将,代入yx得:,直线yx+m与直线yx,如图,设AB与CD交于点E,当AB的长度最小时,四边形ACBD面积最小,由直线yx+m与双曲线的图像和性质可得,当直线yx+m经过原点时,AB的长度最小,即此时m=0,直线yx,联立直线yx与双曲线,即,解得:,将,代入yx得:,故答案为:【点睛】此题考查了一次函数与反比例函数结合,四边形面积问题,解题的关键是正确分析出当直线yx+m经过原点时四边形ACBD面积最小2、【解析】【分析】把点坐标代入解析式,然后求时函数值即可【详解】把点坐标代入解析式得:,解得:反比例函数,在反比例函数上,故答案为:【点睛】本题主要考查求反比例函数解析式,和函数值,解题的关键是熟知待定系数法确定函数关系式3、【解析】【分析】设OCa,BDb,则点A的坐标为(a,a),点B的坐标为(a+b,ab),利用反比例函数图象上点的坐标特征可得出a2b2,再由,此题得解【详解】解:设OCa,BDb,OAC和BAD都是等腰直角三角形 点A的坐标为(a,a),点B的坐标为(a+b,ab)又ACOADB90°反比例函数在第一象限的图象经过点B,(a+b)(ab),即a2b2,=则BAD与OAC的面积之差为-故答案为:【点睛】本题主要考查反比例函数与几何综合,掌握等腰直角三角形的性质,勾股定理,平方差公式是解题的关键4、 (,); 【解析】【分析】设P与边AB,AO分别相切于点E、D,连接PE、PD、PA,用面积法可求出P的半径,然后通过等腰直角三角形的性质可求出CD,从而得到点P的坐标,即可求出k的值【详解】解:设P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示则有PDOA,PEAB设P的半径为r,AB=5,AC=1,SAPB=ABPE=r,SAPC=ACPD=rAOB=90°,OA=4,AB=5,OB=3SABC=ACOB=×1×3=SABC=SAPB+SAPC,=r+rr=PD=OC=OA-AC=4-1=3,OB=3,OB=OC=3,BOC=90°,OBC为等腰直角三角形,BCO=45°,PDOA,DPC=90°-BCO=90°-45°=45°=PCD,PDC为等腰直角三角形,CD=PD=OD=OC-CD=3-=点P的坐标为(,)反比例函数y=(k0)的图象经过圆心P,k=×=故答案为:(,);【点睛】本题考查用待定系数法求反比例函数的解析式、等腰直角三角形的判定与性质、切线的性质、勾股定理,三角形面积,一元一次方程等知识,有一定的综合性5、-2(答案不唯一)【解析】【分析】利用反比例函数的性质得到k0,然后在此范围内取一个值即可【详解】解:双曲线的一支分别位于第二象限,k0,k可取-2故答案为-2(答案不唯一)【点睛】本题考查了反比例函数的性质:反比例函数y=(k0)的图象是双曲线;当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大三、解答题1、(1);(2)h【分析】(1)当时,设y与x之间的函数关系式为,求出,令,求得,由此即可得到答案;(2)先求出E点的坐标,从而求出反比例函数的解析式,然后分别把,代入反比例函数和一次函数中进行求解即可【详解】解:(1)当时,设y与x之间的函数关系式为由题意得解得,当时,粉尘检测仪在工人加工前显示的数据为;(2)将代入,得,点点E在反比例函数的图像上,即反比例函数的表达式为,把,分别代入当时,;当时,把,分别代入,当时,;当时,该车间空气质量保持良的时间为h答:该车间空气质量保持良的时间为h【点睛】本题主要考查了一次函数和反比例函数的实际应用,解题的关键在于能够正确读懂函数图像2、图见解析,函数的图象是两条曲线,关于y轴对称,两个分支分别位于一、二象限,在第二象限y随着x的增大而增大,在第一象限y随着x的增大而减小【分析】根据函数的解析式作出函数的图象,然后描述其所处的位置及其增减性即可【详解】解:列表如下:x-4-3-2-11234y11函数y表达式y的图象如下图:函数的图象是两条曲线,关于y轴对称,两个分支分别位于一、二象限,在第二象限y随着x的增大而增大,在第一象限y随着x的增大而减小【点睛】此题考查了画函数图象,依据函数图象得到函数的性质,正确掌握函数图象的画法画出函数图象是解题的关键3、(1),;(2)横坐标,解集或【分析】(1)先利用菱形的性质和勾股定理求出AD的长,再利用菱形的面积公式求出OC的长,即可求出OA的长,再根据H为AC的中点,求出H的坐标即可求出反比例函数解析式,再根据BC=AD=5,BCAD,C(0,4)即可得到B点坐标即可求出直线AB的解析式;(2)由函数图像可知,不等式的解集即为反比例函数图像在一次函数图像上方的自变量的取值范围,由此求解即可【详解】解:四边形ABCD是菱形,ACBD, ,,在RtADH中,由勾股定理得,C点坐标为(0,4),在RtAOC中,由勾股定理得,A点坐标为(2,0)H是AB的中点,H的坐标为(,)(1,2),H在反比例函数上,k1×22,反比例函数的关系式为,四边形ABCD是菱形,BC=AD=5,BCAD,B点坐标为(5,4),直线AB的解析式为;(2)联立得:,即,解得,由函数图像可知,不等式的解集即为反比例函数图像在一次函数图像上方的自变量的取值范围,不等式的解集为或【点睛】本题主要考查了菱形的性质,中点距离公式,一次函数与反比例函数综合,图形法解不等式,解题的关键在于能够熟练掌握菱形的性质4、y【分析】根据题意可以设出y(k0),把“x2,y4”代入,进行求解即可得出函数解析式【详解】解:依题意可设y(k0),当x2时,y4,4,k4,函数解析式为y答:y关于x的函数解析式是y【点睛】本题考查待定系数法求反比例函数解析式,注意设函数解析式时,系数k不为零5、(1),;(2);(3)或【分析】(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;(2)求出直线AB与x轴的交点C的坐标,分别求出ACO和BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案【详解】解:把点分别代入反比例函数,一次函数,得,解得,所以反比例函数的解析式是,一次函数解析式是;如图,设直线与轴的交点为,当时,当时,;,根据图象可知:当或时,一次函数值大于反比例函数值【点睛】本题考查了一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积,一次函数的图象等知识点,解题关键是熟练运用待定系数法求出函数解析式,能够利用数形结合思想求不等式的解集