真题解析:2022年北京市朝阳区中考数学五年真题汇总-卷(Ⅲ)(含答案及详解).docx
-
资源ID:28221722
资源大小:507.64KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
真题解析:2022年北京市朝阳区中考数学五年真题汇总-卷(Ⅲ)(含答案及详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年北京市朝阳区中考数学五年真题汇总 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程组中,二元一次方程组有( );A4个B3个C2个D1个2、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )ABCD3、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则BAC的度数是( )A75°或105°B15°或105°C15°或75°D30°或90°4、的相反数是( )ABCD35、如图,DE是的中位线,若,则BC的长为()A8B7C6D7.56、如图,在中,则的值为( )ABCD7、要使式子有意义,则()ABCD8、如图,为直线上的一点,平分,则的度数为( )A20°B18°C60°D80°· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·9、下列方程是一元二次方程的是( )Ax23xy3Bx23Cx22xDx2310、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )A11.5×108B1.15×108C11.5×109D1.15×109第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m是方程3x22x30的一个根,则代数式6m24m的值为_2、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,若,则_3、如图,四边形中,在、上分别找一点M、N,当周长最小时,的度数是_4、如图,已知中,作AC的垂直平分线交AB于点、交AC于点,连接,得到第一条线段;作的垂直平分线交AB于点、交AC于点,连接,得到第二条线段;作的垂直平分线交AB于点、交于点,连接,得到第三条线段;,如此作下去,则第n条线段的长为_5、定义新运算“*”;其规则为a*b,则方程(2*2)×(4*x)8的解为x_三、解答题(5小题,每小题10分,共计50分)1、阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如根据以上材料,解答下列问题(1)分解因式:;(2)求多项式的最小值;(3)已知a,b,c是的三边长,且满足,求的周长2、如图,一次函数的图象与反比例函数的图象交于A,B两点,且与y轴交于点C,点A的坐标为· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)求m及k的值;(2)求点B的坐标及的面积;(3)观察图象直接写出使反比例函数值大于一次函数值的自变量x取值范围3、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上(1)求点B的坐标(用含的代数式表示);(2)二次函数的对称轴是直线 ;(3)已知点(,),(,),(,)在二次函数的图象上若,比较,的大小,并说明理由4、解下列方程:(1)(2)5、(1)解方程3(x+1)8x+6;(2)解方程组-参考答案-一、单选题1、C【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程【详解】解:、符合二元一次方程组的定义,故符合题意;、第一个方程与第二个方程所含未知数共有3个,故不符合题意;、符合二元一次方程组的定义,故符合题意;、该方程组中第一个方程是二次方程,故不符合题意故选:【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:方程组中的两个方程都是整式方程方程组中共含有两个未知数每个方程都是一次方程· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.3、B【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论【详解】解:分别作ODAC,OEAB,垂足分别是D、EOEAB,ODAB,AE=AB=,AD=AC=,AOE=45°,AOD=30°,CAO=90°-30°=60°,BAO=90°-45°=45°,BAC=45°+60°=105°,同理可求,CAB=60°-45°=15°BAC=15°或105°,故选:B【点睛】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解4、D【分析】根据只有符号不同的两个数是互为相反数解答即可【详解】解:的相反数是3,故选D【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数5、A【分析】已知DE是的中位线,根据中位线定理即可求得BC的长· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】是的中位线,故选:A【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键6、C【分析】由三角函数的定义可知sinA=,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可【详解】解:在直角三角形ABC中,C=90°sinA=,可设a=5k,c=13k,由勾股定理可求得b=12k,cosA=,故选:C【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键7、B【分析】根据分式有意义的条件,分母不为0,即可求得答案【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键8、A【分析】根据角平分线的定义得到,从而得到,再根据可得,即可求出结果【详解】解:OC平分,故选:A【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键9、D· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】根据一元二次方程的定义逐个判断即可只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程【详解】解:A是二元二次方程,不是一元二次方程,故本选项不符合题意;B是分式方程,故本选项不符合题意;C不是方程,故本选项不符合题意;D是一元二次方程,故本选项符合题意;故选:D【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键10、D【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:11.5亿11500000001.5×109故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题1、6【分析】把x=m代入方程得出3m2+2m=3,把6m24m化成2(3m2+2m),代入求出即可【详解】解:m是方程3x22x30的一个根,3m2+m-3=0,3m2+2m=3,6m24m =2(3m2+2m)=2×3=6故答案为6【点睛】本题考查了一元二次方程的解的应用,用了整体代入思想,即把3m2+2m当作一个整体来代入2、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可【详解】设BD=a,AE=b,CD=2a,CE=2b,DE=CE-CD=2b-2a=2即b-a=1,AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·3、128°【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图由对称的性质得:AN=FN,AM=EMF=NAD,E=MABAM+AN+MN=EM+FN+MNEF当M、N在线段EF上时,AMN的周长最小AMN+ANM=E+MAB+F+NAD=2E+2F=2(E+F)=2(180°BAD)=2×(180°116°)=128°故答案为:128°【点睛】本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键4、或【分析】由题意依据垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半得出,进而总结规律即可得出第n条线段的长.【详解】解:,垂直平分AC,,同理,,可得第n条线段的长为:或.故答案为:或.【点睛】本题考查图形规律,熟练掌握垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半是解题的关键.· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、【分析】先根据已知新运算求出求出2*2=3,4*x=2+x,根据(2*2)×(4*x)=8求出答案即可【详解】解:2*2= =3,4*x=2+x,又(2*2)×(4*x)=8(2*2)×(4*x)=3(x+2)=8,解得:x=,故答案为:【点睛】本题考查了有理数的混合运算和解一元一次方程,能灵活运用新运算进行计算是解此题的关键三、解答题1、(1)(2)(3)12【分析】(1)先配完全平方,然后利用平方差公式即可(2)先配方,然后根据求最值即可(3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长(1)解:(2)解:多项式的最小值为(3)解:即,的周长【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识解题的关键在于正确的配方2、(1)m3,k2;(2)(,4),;(3)或【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)求出C的坐标,根据图形即可求出答案(1)解:点A(2,1)在函数y2x+m的图象上,4+m1,即m3,A(2,1)在反比例函数的图象上,k2;所以m3,k2;(2)解:一次函数解析式为y2x3,令x0,得y-3,点C的坐标是(0,-3),OC3,联立方程组得,得:或,点B的坐标为(,4),SAOBSAOC+SBOC;(3)解:观察图象可知,在第三象限时,在点B左侧或在第一象限时,在点A左侧时,反比例函数值大于一次函数值,故自变量x取值范围为或【点睛】本题考查了待定系数法求出一次函数和反比例函数的解析式、两函数的交点问题和函数的图象等知识点,能求出两函数的解析式是解此题的关键,用了数形结合思想3、(1)B(4,);(2);(3),见解析【分析】(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可【详解】解:(1)令,点A的坐标为(0,),将点A向右平移4个单位长度,得到点B,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·点B的坐标为(4,).(2) A的坐标为(0,),点B的坐标为(4,)点都在在二次函数的图象上即关于对称轴对称对称轴为(3)对称轴是直线,点(,),(,)在对称轴的左侧,点(,)在对称轴的右侧,.【点睛】本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键4、(1);(2)【分析】(1)去括号,移项合并,系数化1即可;(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可(1)解:,去括号得:,移项合并得:,系数化1得:;(2)解:,小数分母化整数分母得:,去分母得:,去括号得:,移项得:,合并得:,系数化1得:【点睛】本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键5、(1)x=;(2)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)×2+得出13x=26,求出x,把x=2代入求出y即可【详解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=;(2),×2+,得13x=26,解得:x=2,把x=2代入,得10+y=7,解得:y=-3,所以方程组的解是【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键