欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试卷京改版八年级数学下册第十五章四边形同步测评试卷(精选).docx

    • 资源ID:28221961       资源大小:595.11KB        全文页数:24页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试卷京改版八年级数学下册第十五章四边形同步测评试卷(精选).docx

    京改版八年级数学下册第十五章四边形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24<m<39B14<m<62C7<m<31D7<m<122、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形3、已知中,CD是斜边AB上的中线,则的度数是( )ABCD4、垦区小城镇建设如火如荼,小红家买了新楼爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )A1种B2种C3种D4种5、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD6、下列四个图形中,为中心对称图形的是()ABCD7、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个8、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD9、平行四边形中,则的度数是( )ABCD10、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_2、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _3、一个多边形,每个外角都是,则这个多边形是_边形4、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形5、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF2、如图,点E为矩形ABCD外一点,AE = DE.求证:ABEDCE3、如图,四边形ABCD是平行四边形,延长DA,BC,使得AECF,连接BE,DF(1)求证:ABECDF;(2)连接BD,若132°,ADB22°,请直接写出当ABE °时,四边形BFDE是菱形4、如图,ABC中,点D是边AC的中点,过D作直线PQBC,BCA的平分线交直线PQ于点E,点G是ABC的边BC延长线上的点,ACG的平分线交直线PQ于点F求证:四边形AECF是矩形5、如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形-参考答案-一、单选题1、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键2、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形3、B【分析】由题意根据三角形的内角和得到A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90°,B=54°,A=36°,CD是斜边AB上的中线,CD=AD,ACD=A=36°.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键4、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面故只购买一种瓷砖进行平铺,有3种方式故选:C【点睛】本题主要考查了平面镶嵌解这类题,根据组成平面镶嵌的条件,逐个排除求解5、C【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键6、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心7、C【分析】根据SAS证ABIADC即可得证正确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90°,IAC+CABBAD+CAB,即IABCAD,在ABI和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90°,四边形ACHI是正方形,AIAC,IAC90°,S1AC2,CAM90°,又ACB90°,ACBCAMBMA90°,四边形AMBC是矩形,BMAC,SABIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90°,四边形AKJD是矩形,KADAKJ90°,S3ADAK,NAKAKC90°,CNANAKAKC90°,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键8、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为×ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用9、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质10、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形二、填空题1、或或3【分析】过B作BMAC于M,根据矩形的性质得出ABC90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:ABBP3,ABAP3,APBP,分别画出图形,再求出面积即可【详解】解:四边形ABCD是矩形,ABC90°,由勾股定理得:,有三种情况:当ABBP3时,如图1,过B作BMAC于M,SABC,解得:,ABBP3,BMAC,APAM+PM,PAB的面积;当ABAP3时,如图2,BM,PAB的面积S;作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则APBP,BNAN,四边形ABCD是矩形,NQAC,PNBC,ANBN,APCP,PAB的面积;即PAB的面积为或或3故答案为:或或3【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键2、10【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出最后根据勾股定理可求出,即正方形的面积为10【详解】四边形ABCD是正方形,根据题意可知:,在和中,在中,正方形ABCD的面积是10故答案为:10【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键3、六6【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数【详解】一个多边形的每个外角都是60°,n=360°÷60°=6,故答案为:六【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键4、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键5、6和8【分析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可【详解】解:设两条对角线分别为3x、4x,根据题意得,×3x4x=24,解得x=2(负值舍去),菱形的两对角线的长分别为,故答案为:6和8【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记三、解答题1、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键2、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,在和中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键3、(1)见解析;(2)12【分析】(1)由“SAS”可证ABECDF;(2)通过证明BE=DE,可得结论【详解】证明:(1)四边形ABCD是平行四边形,AB=CD,BAD=BCD,1=DCF,在ABE和CDF中,ABECDF(SAS);(2)当ABE=10°时,四边形BFDE是菱形,理由如下:ABECDF,BE=DF,AE=CF,四边形ABCD是平行四边形,AD=BC,AD+AE=BC+CF,BF=DE,四边形BFDE是平行四边形,1=32°,ADB=22°,ABD=1-ADB=10°,ABE=12°,DBE=22°,DBE=ADB=22°,BE=DE,平行四边形BFDE是菱形,故答案为:12【点睛】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键4、见解析【分析】先根据平行线的性质得到DECBCE,DFCGCF,再由角平分线的定义得到,则DECDCE,DFCDCF,推出DEDC,DFDC,则DEDF,再由ADCD,即可证明四边形AECF是平行四边形,再由ECFDCE+DCF,即可得证【详解】证明:PQBC,DECBCE,DFCGCF,CE平分BCA,CF平分ACG,DECDCE,DFCDCF,DEDC,DFDC,DEDF,点D是边AC的中点,ADCD,四边形AECF是平行四边形,BCA+ACG180°,ECFDCE+DCF,平行四边形AECF是矩形【点睛】本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键5、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案不唯一【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质

    注意事项

    本文(精品试卷京改版八年级数学下册第十五章四边形同步测评试卷(精选).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开