欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试卷沪科版九年级数学下册第24章圆综合训练试题(无超纲).docx

    • 资源ID:28222035       资源大小:777.32KB        全文页数:26页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试卷沪科版九年级数学下册第24章圆综合训练试题(无超纲).docx

    沪科版九年级数学下册第24章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD内接于O,若ADC=130°,则AOC的度数为( )A25°B80°C130°D100°2、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同3、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、如图,是的直径,弦,垂足为,若,则( )A5B8C9D106、如图,AB,CD是O的弦,且,若,则的度数为( )A30°B40°C45°D60°7、如图,都是上的点,垂足为,若,则的度数为( )ABCD8、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90°后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形9、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD10、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB = AC,以AB为直径的圆O交BC边于点D要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _ (写出所有正确答案的序号)BAC > 60°;45° < ABC < 60°;BD > AB;AB < DE < AB2、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_3、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)4、如图,在中,分别以、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”当,时,则阴影部分的面积为_5、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)求过A,B,C三点的圆的半径;(3)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;2、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30°,求CD的长3、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBAC(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP8,O的半径为3,求BC的长4、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明5、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”)(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形-参考答案-一、单选题1、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180°,ADC=130°,B=50°,由圆周角定理得,AOC=2B=100°,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键2、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键3、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30°求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60°,MBH+HBN=60°,又MBH+MBC=ABC=60°,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点4、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键6、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键7、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键8、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90°,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90°后能与CBF重合,ECF90°,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键9、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.10、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键二、填空题1、【分析】将所给四个条件逐一判断即可得出结论【详解】解:在中, 当BAC > 60°时,若时,点E与点A重合,不符合题意,故不满足;当ABC时,点E与点A重合,不符合题意,当ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,所以,当45° < ABC < 60°时,点E关于直线AD的对称点在线段OA上,故满足条件;当时,点E关于直线AD的对称点在线段OA上,故不满足条件;当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故满足条件;所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ABC < 60°或AB < DE < AB故答案为【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键2、90°【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论【详解】解:是的内接正六边形一边 故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键3、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键4、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即【详解】解:在中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键5、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键三、解答题1、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5)【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:;(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+3),过点P作PQ轴于点Q,OA =OC,PAC=90°,ACO=OAC=45°,PAC=90°,PAQ=45°,PAQ 是等腰直角三角形,PQ=AQ=x,AQ+AO=x+3=-x2+2x+3,解得:(舍去),点P(1,4);设点P1(m,-m2+2m+3),过点P1作P1D轴于点D,同理得P1CD是等腰直角三角形,且点P1在第三象限,即m<0,P1D=CD=m2-2m-3,DO=-m,DO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),点P(-2,-5);综上,点P(1,4)或(-2,-5)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏2、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90°,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180°DAB+DAM=90°即BAM=90°,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30°在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键3、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长(1)证明:连接,如图所示:是的直径,即,是的切线;(2)解:的半径为,又,即,【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定4、(1);(2)见解析;AE=AF+CE,证明见解析【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60°,AD=AC,DAF=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60°,CHE+D=D+HCE=60°,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线5、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可

    注意事项

    本文(精品试卷沪科版九年级数学下册第24章圆综合训练试题(无超纲).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开