精品试题北师大版八年级数学下册第三章图形的平移与旋转同步训练练习题.docx
-
资源ID:28222917
资源大小:907.31KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试题北师大版八年级数学下册第三章图形的平移与旋转同步训练练习题.docx
八年级数学下册第三章图形的平移与旋转同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到A'B'C,则点P的坐标是()A(4,5)B(4,4)C(3,5)D(3,4)2、下列图形中,是中心对称图形的是( )ABCD3、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个4、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD5、下列图形中,不是中心对称图形的是( )ABCD6、下列图案中,是中心对称图形的是( )ABCD7、如图,在ABC中,ACB90°,BAC20°,将ABC绕点C顺时针旋转90°得到A'B'C',点B的对应点B'在边AC上(不与点A,C重合),则AA'B'的度数为()A20°B25°C30°D45°8、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) A40°B50°C70°D1009、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度10、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_2、已知在ABC中,C90°,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,若旋转后点C的对应点C落直线AB上,那么AA的长为_3、如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等(1)直接写出点D的坐标_;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为_4、如图,将AOB绕点O按逆时针方向旋转60°后得到COD,若AOB=15°,则AOD的度数为_°5、点关于原点对称的点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、已知与是两个大小不同的等腰直角三角形(1)如图1所示,连接AE,DB,则线段AE和DB的数量关系和位置关系分别是:_(请直接写出结论)(2)如图2所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,请写出线段DE和AF的关系,并说明理由2、在RtABC中,AB=AC,BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到线段AE探索:(1)连接EC,如图,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)如图,在四边形ABCD中,ABC=ACB=45°,若BD=7,将边AD绕点A逆时针旋转90°得到线段AE连接DE、CE,求线段CE的长(3)AD与CE交于点N,BD与CE交于点M,在(2)的条件下,试探究BD与CE的位置关系,并加以证明3、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长4、如图,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(-4,-1),B(1,1),C(-1,4),点P(x1,y1)是三角形ABC内一点,点P(x1,y1)平移到点P1(x1+3,y1-1)时;(1)画出平移后的新三角形A1B1C1并分别写出点A1B1C1的坐标;(2)求出三角形A1B1C1的面积5、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 -参考答案-一、单选题1、B【分析】对应点的连线段的垂直平分线的交点,即为所求【详解】解:如图,点即为所求,故选:B【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心2、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合3、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.6、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合7、B【分析】由旋转知ACA'C,BACCA'B',ACA'90°,从而得出ACA'是等腰直角三角形,即可解决问题【详解】解:将ABC绕点C顺时针旋转90°得到A'B'C,ACA'C,BACCA'B',ACA'90°,ACA'是等腰直角三角形,CA'A45°,BAC20°,CA'B'20°,AA'B'25°故选:B【点睛】本题主要考查了图形的旋转,等腰直角三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键8、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40°后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键9、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度10、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数2、或【分析】分两种情况讨论:当点在线段上和当点在线段的延长线上,根据旋转的性质求出对应边长度,再根据勾股定理求解即可【详解】当点在线段上,如图1,连接,C90°,AC12,BC5,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACABBC8,;当C点在线段AB的延长线上,如图2,连接AA,在平面内将ABC绕B点旋转,点A落到A,点C落到C,BCBC5,ACAC12,ACAB+BC18,综合以上可得AA的长为或故答案为:或【点睛】本题考查旋转的性质以及勾股定理,掌握旋转前后对应线段相等是解题的关键3、 或【分析】(1)观察坐标系即可得点D坐标;(2)对应点连线段的垂直平分线的交点即为旋转中心【详解】解:(1)观察图象可知,点D的坐标为(6,6),故答案为:(6,6);(2)当点A与C对应,点B与D对应时,如图:此时旋转中心P的坐标为(4,2);当点A与D对应,点B与C对应时,如图:此时旋转中心P的坐标为(1,5);故答案为:(4,2)或(1,5)【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心4、45【分析】根据旋转的性质得出AOC60°,AOBCOD15°,从而可得答案【详解】解:根据旋转的性质可知AOC60°,AOBCOD15°,AODAOCCOD45°,故答案为:45【点睛】本题主要考查旋转的性质,掌握对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等是解题的关键5、 (3,8)【分析】根据关于原点对称的点的坐标特征即可完成【详解】点关于原点对称的点的坐标是(3,8)故答案为:(3,8)【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,一般地,两点关于原点对称,则其横坐标与纵坐标分别互为相反数,掌握这点是关键三、解答题1、(1),;(2),理由见解析【分析】(1)由与是两个大小不同的等腰直角三角形,可证与全等,即可知,延长BD交AE于点H,相关角度运算后即可得(2)由边角边证明后,进行相关角度运算即可得【详解】(1)如图所示,延长BD交AE于点H与是两个大小不同的等腰直角三角形AC=BC,ACE=DCE=90°,CE=CD,EAC=DBC在中,CDB+DBC=90°CDB+EAC =90°AHD =180°-CDB-EAC= 90°(2) 设DE与AF交于N,由题意得, ,即【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质以及旋转的性质,由等腰直角三角形的性质及定义得到判定三角形全等的条件是解题的关键2、(1)BC=CE+DC,证明见解析;(2)7;(3)BDCE,证明见解析【分析】(1)根据BAC=DAE=90°,得出BAD=CAE,证明BADCAE(SAS),得出BD=CE即可;(2)根据ABC=ACB=45°,得出BAC=180°-ABC-ACB=90°,根据DAE=90°,可证BAD=CAE,可证BADCAE,可得BD=CE=7;(3)由(2)得BADCAE得出ADB=AEC,根据EAD=90°得出AEN+ANE=90°根据对顶角性质得出ANE=DNM 可求DNM+ADB=ANE+AEC=90°即可【详解】证明:(1)结论:BC=CE+DC证明如下:BAC=DAE=90°,BAD+DAC=DAC+CAE,BAD=CAE,BAD和CAE中,BADCAE(SAS),BD=CE,BC=BD+DC,BC=CE+DC ;(2)ABC=ACB=45°,BAC=180°-ABC-ACB=90°,DAE=90°,BAC+CAD=CAD+DAE,BAD=CAE,在BAD和CAE中,BADCAE(SAS),BD=CE=7;(3)结论:BDCE设EC与AD交于N,BD与CE交于M,如图2,由(2)得BADCAE, ADB=AEC, EAD=90°,AEN+ANE=90°,ANE=DNM , DNM+ADB=ANE+AEC=90°,NMD=90°,BDCE【点睛】本题考查三角形全等判定与性质,图形性质性质,线段和差,直线位置关系,掌握三角形全等判定与性质,图形性质性质,线段和差,直线位置关系是解题关键3、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AOBC,BAO=CAO=45°,ABC的面积=BCAO=9,BAC=90°,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接4、(1)见解析;A1(-1,-2),B1(4,0),C1(2,3);(2)三角形A1B1C1的面积为【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可(2)利用分割法求面积即可【详解】(1)点平移到点,平移的规律为:向右平移3个单位,向下平移1个单位,为(,),为(4,0),为(2,3); 平移后的三角形如图所示:(2)面积为:【点睛】本题考查作图-复杂作图,三角形的面积,坐标与图形变化-平移等知识,解题的关键是理解题意,灵活运用所学知识解决问题5、(1)画图见解析,;(2)轴,;(3)【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.