考点解析:北师大版七年级数学下册第三章变量之间的关系专题测试试卷(含答案详细解析).docx
-
资源ID:28223086
资源大小:527.44KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
考点解析:北师大版七年级数学下册第三章变量之间的关系专题测试试卷(含答案详细解析).docx
北师大版七年级数学下册第三章变量之间的关系专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某商场存放处每周的存车量为5000辆次,其中自行车存车费是每辆1元/次,电动车存车费是每辆2元/次,若自行车的存车量为辆次,存车的总收入为元,则与之间的关系式是( )ABCD2、将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中每隔后读一次温度计上显示的度数,将记录下的数据制成下表:时间t(单位:s)51015202530温度计读数(单位:)49.031.022.016.514.012.0下述说法不正确的是( )A自变量是时间,因变量是温度计的读数B当时,温度计上的读数是31.0C温度计的读数随着时间推移逐渐减小,最后保持不变D依据表格中反映出的规律,时,温度计上的读数是13.03、下列图象中,能反映出投篮时篮球的离地高度与投出后的时间之间关系的是( )ABCD4、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。设行进时间为t(单位:min),行进的路程为s(单位:m),则能近似刻画s与t之间的函数关系的大致图象是( )ABCD5、某居民小区电费标准为0.55元/千瓦时,收取的电费y(元)和所用电量x(千瓦时)之间的关系式为,则下列说法正确的是( )Ax是自变量,0.55是因变量B0.55是自变量,x是因变量Cx是自变量,y是因变量Dy是自变量,x是因变量6、小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数(元)与购买彩笔的支数(支)之间的关系式为( )ABCD7、如图,扇形OAB动点P从点A出发,沿、线段BO、OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是()ABCD8、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x/kg012345y/cm1010.51111.51212.5下列说法一定错误的是()Ax与y都是变量,且x是自变量,y是因变量B弹簧不挂重物时的长度为0cmC物体质量每增加1kg,弹簧长度y增加0.5 cmD所挂物体质量为7kg时,弹簧长度为13.5cm9、下面说法中正确的是( )A两个变量间的关系只能用关系式表示B图象不能直观的表示两个变量间的数量关系C借助表格可以表示出因变量随自变量的变化情况D以上说法都不对10、如表是加热食用油的温度变化情况:时间油温王红发现,烧了时,油沸腾了,则下列说法不正确的是( )A没有加热时,油的温度是B加热,油的温度是C估计这种食用油的沸点温度约是D每加热,油的温度升高第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,在三角形中,已知,高,动点由点沿向点移动不与点重合设的长为,三角形的面积为,则与之间的关系式为_2、在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度与所挂物体质量的一组对应值所挂质量012345弹簧长度182022242628若所挂重物为7kg时(在允许范围内),此时的弹簧长度为_3、把一个函数的自变量与对应的函数的值分别作为点的_坐标和_坐标,在直角坐标系中描出它的对应点,_的图形叫做这个函数的图象4、小明从家跑步到学校,接着马上原路步行回家如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行_m5、在烧开水时,水温达到100就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间(分)和温度T()的数据:在水烧开之前(即),温度T与时间的关系式为_.三、解答题(5小题,每小题10分,共计50分)1、如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后分钟到分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的分钟内、分钟内、分钟内的平均速度2、如图,自行车每节链条的长度为,交叉重叠部分的圆的直径为()观察图形,填写下表:链条的节数/节链条的长度/()如果节链条的长度是,那么与之间的关系式是什么?()如果一辆某种型号自行车的链条(安装前)由节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?3、在建设社会主义新农村过程中,某村委决定投资开发项目,现有6个项目可供选择,各项目所需资金及预计年利润如下表:所需资金(亿元)124678预计利润(千万元)0.20.350.550.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果预计要获得0.9千万元的利润,你可以怎样投资项目?(3)如果该村可以拿出10亿元进行多个项目的投资,预计最大年利润是多少?说明理由4、如图是小李骑自行车离家的距离s (km)与时间t (h) 之间的关系(1)在这个变化过程中自变量_,因变量是_,(2)小李_时到达离家最远的地方?此时离家_km;(3)分别写出在1t2时和2t4时小李骑自行车的速度为_ km/h 和_km/h(4)小李_时与家相距20km5、如图在直角梯形中,点P,Q同时从点B出发,其中点P以的速度沿着点运动;点Q以的速度沿着点运动,当点Q到达C点后,立即原路返回,当点P到达D点时,另一个动点Q也随之停止运动(1)当运动时间时,则三角形的面积为_;(2)当运动时间时,则三角形的面积为_;(3)当运动时间为时,请用含t的式子表示三角形的面积-参考答案-一、单选题1、C【分析】根据题意得:总收入为y元=自行车存车费+电动车存车费,据此写出题目中的函数解关系式,从而可以解答本题【详解】解:由题意可得,故选C【点睛】本题考查函数关系式,解答本题的关键是明确题意,写出题目中的函数关系式2、D【分析】根据题意和表格中的数据逐项判断即可【详解】解:A、自变量是时间,因变量是温度计的读数,正确,不符合题意;B、当时,温度计上的读数是31.0,正确,不符合题意;C、温度计的读数随着时间推移逐渐减小,最后保持不变,正确,不符合题意;D、依据表格中反映出的规律,时,温度计上的读数可能低于12或者等于12,错误,符合题意,故选:D【点睛】本题考查用表格表示变量间的关系,能从表格中获取有效信息是解答的关键3、C【分析】根据题意,篮球离地高度与投出时间的关系的图象为抛物线,然后选择即可【详解】投篮时篮球的离地高度与投出后的时间之间关系的函数图象为抛物线,能够反映出投篮时篮球的离地高度与投出后的时间之间关系的是选项的图象故选:【点睛】本题考查了函数图象,主要是对抛物线的理解与抛物线图象的认识,是基础题4、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键5、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.6、B【分析】由题意可知,y与x成正比例函数,设函数关系式为y=kx(k0),根据每打彩笔是12支,售价18元,可确定k的值求出函数关系式.【详解】解:设函数关系式为y=kx(k0),由题意,得当x=12时,y=18,18=12k解得k=故选B.【点睛】本题考查了根据实际问题列函数式.关键是确定函数形式,以及用待定系数法求函数的解析式.7、D【详解】试题分析:点P在弧AB上时,OP的长度y等于半径的长度,不变;点P在BO上时,OP的长度y从半径的长度逐渐减小至0;点P在OA上时,OP的长度从0逐渐增大至半径的长度按照题中P的路径,只有D选项的图象符合故选D考点:函数图象(动点问题)8、B【分析】根据变量与常量,函数的表示方法,结合表格中数据的变化规律逐项进行判断即可【详解】解:Ax与y都是变量,且x是自变量,y是因变量,是正确的,因此选项A不符合题意;B弹簧不挂重物时的长度,即当x=0时y的值,此时y=10cm,因此选项B是错误的,符合题意;C物体质量x每增加1kg,弹簧长度y增加0.5cm,是正确的,因此选项C不符合题意;D根据物体质量x每增加1kg,弹簧长度y增加0.5cm,可得出所挂物体质量为7kg时,弹簧长度为13.5cm,是正确的,因此选项D不符合题意;故选:B【点睛】本题考查常量与变量,函数的表示方法,理解和发现表格中数据的变化规律是解决问题的关键9、C【详解】表示函数的方法有三种:解析法、列表法和图象法解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C10、B【分析】根据题意由表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20,则t=50时,油温度y=110;t=110秒时,温度y=230,以此进行分析判断即可【详解】解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20,则50秒时,油温度110;110秒时,温度为,A、C、D均可以得出.故选:B【点睛】本题考查函数的表示方法,熟练掌握并能够通过表格确定自变量与因变量的变化关系是解题的关键二、填空题1、【分析】根据三角形的面积公式可知,由此求解即可【详解】AD是ABC中BC边上的高,CQ的长为x,故答案为:【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式2、32【分析】由表中的数据可知,x=0时,y=18,并且每增加1千克的质量,长度增加2cm,依此可求所挂重物为7千克时(在允许范围内)时的弹簧长度【详解】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg时,弹簧的长度为:y=14+18=32(cm)故答案为:32.【点睛】此题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题明确变量及变量之间的关系是解好本题的关键3、横 纵 由这些点组成 【分析】利用对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象,进而得出即可【详解】解:把一个函数的自变量与对应的函数的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,由这些点组成的图形叫做这个函数的图象故答案为:横,纵,由这些点组成【点睛】此题主要考查了函数图形的定义,熟练根据函数定义得出是解题关键4、80【分析】先分析出小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得【详解】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米)故答案为:80【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解5、T=7t+30【分析】由表知开始时温度为30,再每增加2分钟,温度增加14,即每增加1分钟,温度增加7,可得温度T与时间t的关系式【详解】解:开始时温度为30,每增加1分钟,温度增加7,温度T与时间t的关系式为:T=30+7t故答案为T=7t+30【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30,每增加1分钟,温度增加7三、解答题1、(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可;(3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案;(4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:20分钟内平均速度:90020=45(米/分);30分钟内平均速度:90030=30(米/分);45分钟内平均速度:90045=40(米/分)【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键2、();();()102cm【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节 2 3 4 链条的长度/cm 4.2 5.9 7.6 (2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n节链条的长度与每节长度之间的关系是解决问题的关键.3、(1)所需资金和利润之间的关系,所需资金为自变量,年利润为因变量;(2)可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目;(3)最大利润是1.45亿元,理由详见解析【分析】(1)分别根据变量、因变量的定义分别得出即可;(2)根据图表分析得出投资方案;(3)分别求出不同方案的利润进而得出答案【详解】解:(1)所需资金和利润之间的关系所需资金为自变量年利润为因变量;(2)可以投资一个7亿元的项目也可以投资一个2亿元,再投资一个4亿元的项目还可以投资一个1亿元,再投资一个6亿元的项目答:可以投资一个7亿元的项目;也可以投资一个2亿元,再投资一个4亿元的项目;还可以投资一个1亿元,再投资一个6亿元的项目(3)共三种方案:1亿元,2亿元,7亿元,利润是亿元2亿元,8亿元,利润是亿元4亿元,6亿元,利润是亿元最大利润是亿元答:最大利润是亿元【点睛】此题主要考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键4、(1)离家时间,离家距离;(2)2,30;(3)20,5;(4)h或4h【分析】(1)在坐标系中横坐标是自变量,纵坐标是因变量,据此求解;(2)根据图象可以得到离家最远时的时间,此时离家的距离,据此即可确定;(3)根据图象可以得到从1时开始到2时自行车移动的距离和所用的时间,从2时开始到4时自行车移动的距离和所用的时间,据此即可求得;(4)根据图象可以得到有两个时间点,据此即可确定【详解】解:(1)在这个变化过程中自变量离家时间,因变量是离家距离,故答案为:离家时间,离家距离;(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km,故答案为:2,30;(3)当1t2时,小李行进的距离为30-10=20(km),用时2-1=1(h),所以小李在这段时间的速度为:(km/h),当2t4时,小李行进的距离为30-20=10(km),用时4-2=2(h),所以小李在这段时间的速度为:(km/h),故答案为:20,5;(4)根据图象可知:小李h或4h与家相距20km,故答案为:h或4h【点睛】本题考查了一次函数的图象,根据图象正确理解s随t的增大的变化情况是关键5、(1)16;(2)30;(3)当运动时间为时,三角形的面积【分析】(1)根据、的值和点Q的速度是,点P的速度是,求出、的值,再根据三角形面积公式计算即可;(2)求出的值,再根据三角形面积公式计算即可;(3)分三种情况讨论:根据三角形面积公式列出即可【详解】解:(1)AB=5cm,AD=8cm,BC=14cm,点Q的速度是2cm/s,点P的速度是1cm/s,当运动时间t=4s时,QB=2t=2×4=8(cm),BP=t=4(cm),则三角形BPQ的面积为:,故答案为:16;(2)当运动时间时,AB=5cm,点P的速度是1cm/s,点P运动到了AD上,则三角形的面积为:,故答案为:30;(3)当P在上时,此时,则三角形的面积为;当P在上,且Q沿着点运动时,BC=14cm,点Q的速度是2cm/s,此时,即,则三角形的面积为;当P在上,且Q沿着点运动时,AB=5cm,AD=8cm,点P的速度是1cm/s,此时,即,则三角形的面积为;综上,当运动时间为时,三角形的面积【点睛】本题考查了列代数式,三角形的面积,数形结合、分类讨论是解题的关键