欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    难点详解沪教版七年级数学第二学期第十四章三角形章节测评试卷(精选含答案).docx

    • 资源ID:28225853       资源大小:1.01MB        全文页数:34页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    难点详解沪教版七年级数学第二学期第十四章三角形章节测评试卷(精选含答案).docx

    沪教版七年级数学第二学期第十四章三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD是的角平分线,垂足为F若,则的度数为( )A35°B40°C45°D50°2、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D63、如图,ABAC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC4、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB3BC180°FGCDACE+B5、如图,ABC的面积为18,AD平分BAC,且ADBD于点D,则ADC的面积是()A8B10C9D166、根据下列已知条件,不能画出唯一的是( )A,B,C,D,7、如图,和全等,且,对应若,则的长为( )A4B5C6D无法确定8、我们称网格线的交点为格点如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是等腰直角三角形,则满足条件的格点C的个数是()A3B4C5D69、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D1810、如图,已知为的外角,那么的度数是( )A30°B40°C50°D60°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_cm2、如图,上午9时,一艘船从小岛A出发,以12海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是_海里3、一个三角形的其中两个内角为,则这个第三个内角的度数为_4、如图,在三角形ABC中,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G若,则_°5、等腰三角形的两边长分别是和,则它的周长为_三、解答题(10小题,每小题5分,共计50分)1、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段ADDC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CDDA以每秒3个单位长度的速度向终点A运动MEPQ于点E,NFPQ于点F,设运动的时间为秒(1)在运动过程中当M、N两点相遇时,求t的值(2)在整个运动过程中,求DM的长(用含t的代数式表示)(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长2、如图,E为AB上一点,BDAC,ABBD,ACBE求证:BCDE3、如图,RtACB中,ACB90°,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB5、如图,AD是的高,CE是的角平分线若,求的度数6、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE7、如图,四边形中,于点(1)如图1,求证:;(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长8、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:9、已知POQ=120°,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明10、已知:如图,点D为BC的中点,求证:是等腰三角形-参考答案-一、单选题1、B【分析】根据三角形的内角和求出ACB90°,利用三角形全等,求出DCDE,再利用外角求出答案【详解】解:CAB40°,B50°,ACB180°40°50°90°,CEAD,AFCAFE90°,AD是ABC的角平分线,CADEAD×40°20°,又AFAF,ACFAEF(ASA)ACAE,ADAD,CADEAD,ACDAED (SAS),DCDE,DCEDEC,ACE90°20°70°,DCEDECACBACE90°70°20°,BDEDCEDEC20°20°40°,故选:B【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键2、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键3、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键4、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180°FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)5、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,依据全等三角形的判定定理及性质可得:,再根据三角形的面积公式可得:SABD=SADE,SBDC=SCDE,得出SADC=12SABC,求解即可【详解】解:如图,延长BD交AC于点E,AD平分,在和中,SABD=SADE,SBDC=SCDE,SADC=12SABC=12×18=9,故选:C【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键6、B【分析】根据三角形存在的条件去判断【详解】,满足ASA的要求,可以画出唯一的三角形,A不符合题意;,A不是AB,BC的夹角,可以画出多个三角形,B符合题意;,满足SAS的要求,可以画出唯一的三角形,C不符合题意;,AB最大,可以画出唯一的三角形,D不符合题意;故选B【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键7、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可【详解】和全等,对应AB=DF=4故选:A【点睛】本题考查了全等三角形的概念及性质,应注意对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等全等三角形有传递性8、A【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的格点C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的格点C点有3个故共有3个点,故选:A【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想9、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=7×2=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解10、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60°,B20°,AACDB60°20°40°,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答二、填空题1、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果【详解】解:若9cm为底时,腰长应该是(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,7.5+7.5=159,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,6+9=159,以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键2、20【分析】根据题干所给的角的度数,易证是等腰三角形,而AB的长易求,即可根据等腰三角形的性质,得出BC的值【详解】解:据题意得,即,由题意可知这艘船行驶的时间为(小时)(海里),(海里)故答案为:20【点睛】本题考查了三角形外角的性质,等腰三角形的判定和性质,方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,再用数学知识解决实际问题3、60°【分析】依题意,利用三角形内角和为:,即可;【详解】由题得:一个三角形的内角和为:;又已知两个其中的内角为:,; 第三个角为:;故填:【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;4、80【分析】先求解 再求解 再利用三角形的外角的性质可得答案.【详解】解: , , , CG平分, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.5、22【分析】分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.【详解】解: 等腰三角形的两边长分别是和, 当腰长为时,此时 不符合题意,舍去,当腰长为时,此时 符合题意,所以三角形的周长为: 故答案为:【点睛】本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.三、解答题1、(1)2;(2)当0t3时,DM=3-t,当3t8时,DM=t-3;(3)2或1【分析】(1)根据题意得: ,解得:,即可求解;(2)根据题意得:当0t3时,AM=t,则DM=3-t,当3t8时,DM=t-3,即可求解;(3)根据MEPQ,NFPQ,可得DEM=DFN=90°,再由ADC=90°,可得DME =FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,然后分两种情况:当时和当时,即可求解【详解】解:(1)根据题意得: ,解得:,即在运动过程中当M、N两点相遇时,t的值为2;(2)根据题意得:当0t3时,AM=t,则DM=3-t,当3t8时,DM=t-3;(3)MEPQ,NFPQ,DEM=DFN=90°,EDM+ DME =90°,ADC=90°,EDM+FDN =90°,DME =FDN,当DEM与DFN全等时,DM=DN,M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,当时,DM=3-t,CN=3t,则DN=5-3t,3-t=5-3t,解得:t=1,此时DN=5-3t=2,当时,DM=3-t,DN=3t-5,3-t=3t-5,解得: ,DN=3t-5=1,综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1【点睛】本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键2、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明【详解】证明:, 在和中, 【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键3、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可【详解】(1)证明:FDAC,FDA=90°,DFA+DAF=90°,同理,CAE+DAF=90°,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD=AC=BC,AD=CE,在FDG和BCG中,FDGBCG(AAS),DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FDAG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7,CG=DG=1.5,AG=CG+AC=5.5,同理,当点E在线段BC上时,AG= AC -CG+=2.5,故答案为:或【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键4、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解5、【分析】AD是的高,有;由知;CE是的角平分线可得;,;在中,【详解】解:AD是的高CE是的角平分线在中,【点睛】本题考查了角平分线解题的关键在于正确表示各角度之间的数量关系6、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键7、(1)见解析;(2)见解析;(3)2【分析】(1)过点B作于点Q,根据AAS证明得,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和得可求出,从而可得结论【详解】解:(1)证明:过点B作于点Q,如图1又,四边形是矩形;(2)在GF上截取GH=GE,连接AH,如图2,又(3)过点A作于点P,在FC上截取,连接,如图3,由(1)、(2)知,AC是EH的垂直平分线,又, ,即 ,即 在和中,AH=AMHAB=MADAB=AD 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键8、证明见解析【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证【详解】证明:,在和中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键9、(1)见解析;(2)见解析;(3)DAB=150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60°由同角的补角相等得CAO=CBE,由SAS证得CAO和CBE全等,即可得证;(3)由DAB=150°, DA=AB,得ADB=ABD=15°,由等边三角形性质,可得CAB=CBA=ACB =60°,故CAD=150°,由等边对等角得ADC=ACD=15°,由此DBC=DCB=75°,由等角对等边得DB=DC 再由POQ=120°,BDC=30°,得DFO=90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60°POQ=120°,CAO+CBO=180°CBO+CBE=180°,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA=CEB,COE=CEB,COP=COQ; (3)DAB=150°,如图:DAB=150°, DA=AB,ADB=ABD=15°ABC为等边三角形,CAB=CBA=ACB =60°,CAD=150°,AD=AC,ADC=ACD=15°,DBC=DCB=75°,DB=DC,POQ=120°,BDC=30°,DFO=90°AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.10、证明见解析【分析】过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明【详解】如下图,过点D作,交AB于点M,过点D做,交AC于点N 直角和直角中 点D为BC的中点, 直角和直角中 , ,即是等腰三角形【点睛】本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解

    注意事项

    本文(难点详解沪教版七年级数学第二学期第十四章三角形章节测评试卷(精选含答案).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开