欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    难点解析北师大版九年级数学下册第一章直角三角形的边角关系专项测试试卷.docx

    • 资源ID:28226916       资源大小:502.31KB        全文页数:26页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    难点解析北师大版九年级数学下册第一章直角三角形的边角关系专项测试试卷.docx

    九年级数学下册第一章直角三角形的边角关系专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD2、如图,的顶点都是正方形网格中的格点,则( )ABCD3、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD4、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC50米,则小河宽PA为()A50sin44°米B50cos44°C50tan44°米D50tan46°米5、在RtABC中,C =90°,sinA=,则cosA的值等于( )ABCD6、如图,在ABC中,C=90°,ABC=30°,D是AC的中点,则tanDBC的值是( )ABCD7、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD8、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米9、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52°米C米D米10、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,有一个,ABO90°,AOB30°,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30°,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30°,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_2、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:AGD110.5;2tanAED2;SAGDSOGD;四边形AEFG是菱形;BFOF;SOGF1,则正方形ABCD的面积是128,其中正确的是_(只填写序号)3、如图,为了测量河宽(假设河的两岸平行),在河的彼岸选择一点,点看点仰角为,点看点仰角为,若,则河宽为_(结果保留根号)4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、比较大小:tan46°_cos46°三、解答题(5小题,每小题10分,共计50分)1、小明周末沿着东西走向的公路徒步游玩,在A处观察到电视塔在北偏东37度的方向上,5分钟后在B处观察到电视塔在北偏西53度的方向上已知电视塔C距离公路AB的距离为300米,求小明的徒步速度(精确到个位,)2、如图,在中,(1)尺规作图:作的垂直平分线交于点(保留痕迹,不写作法)(2)在(1)的作图下,试求的值(结果保留根号)3、(1)计算:(2)如图,在菱形ABCD中,于点E,求菱形的边长4、如图,ABC中,ADBC,垂足是D,若BC14,AD12,求:(1)AC的值(2)sinC的值5、在ABC中,AD是BC边上的高,C=45°,AD=1,求BC的长-参考答案-一、单选题1、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形2、D【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,从而可以得到的值【详解】解:作CDAB,交AB于点D,由图可得,AC,BC2,AB,解得,CD,sinBAC,故选:D【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答3、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义4、C【分析】先根据APPC,可求PCA=90°-46°=44°,在RtPCA中,利用三角函数AP=米即可【详解】解:APPC,PCA+A=90°,A=46°,PCA=90°-46°=44°,在RtPCA中,tanPCA=,PC=50米,AP=米故选C【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键5、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键6、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90°,ABC=30°,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键7、D【分析】根据DAC60°,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEFDDEF60°,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60°,ODOA,OAD为等边三角形,DOADAOODA60°,ADOD,DFE为等边三角形,EDFEFDDEF60°,DFDE,BDE+FDOADF+FDO60°,BDEADF,ADF+AFD+DAF180°,ADF+AFD180°DAF120°,EFC+AFD+DFE180°,EFC+AFD180°DFE120°,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60°,EDF60°,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60°,COD180°AOD120°,COECODDOE120°60°60°,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60°,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODADABtanABD6tan30°2,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识8、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键9、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义10、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键二、填空题1、×2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30°,OA1,OBOAcosAOB,由题意得,OB12OB×2,OB22OB1×22,OBn×2n×2n1,的长为:×22020=×22020,故答案为:×22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键2、【分析】由四边形ABCD是正方形,可得GADADO45°,又由折叠的性质,可求得ADG的度数,从而求得AGD;利用GAD与ADG度数求得AED度数可得;证AEGFEG得AGFG,由FGOG即可得;由折叠的性质与平行线的性质,易得AEG是等腰三角形,由AEFE、AGFG即可得证;设OFa,先求得EFG45°,从而知BFEFGFOF;由SOGF1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论【详解】解:四边形ABCD是正方形,GADADO45°,由折叠的性质可得:ADGADO22.5°,AGD180°GADADG112.5°,故错误AED180°EADADE67.5°,tanAED1,则2tanAED2,故错误;由折叠的性质可得:AEEF,EFDEAD90°,在AEG和FEG中,AEGFEG(SAS),AGFG,在RtGOF中,AGFGGO,SAGDSOGD,故错误;AGEGADADG67.5°AED,AEAG,又AEFE、AGFG,AEEFGFAG,四边形AEFG是菱形,故正确;设OFa,四边形AEFG是菱形,且AED67.5°,FEGFGE67.5°,EFG45°,又EFO90°,GFO45°,GFEFa,EFO90°,EBF45°,BFEFGFa,即BFOF,故正确;SOGF1,OG21,即a21,则a22,BFEFa,且BFE90°,BE2a,又AEEFa,ABAEBE2aa(2)a,则正方形ABCD的面积是(2)2a2(64)×2128,故正确;故答案为:【点睛】本题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用3、【分析】在RtACB中,利用三角函数求出 ,在RtADB中,利用三角函数,根据得出,求出AB即可【详解】解:在RtACB中,tanACB=,在RtADB中,tanADB=,CD=BC-DC=m,解得m故答案为【点睛】本题考查解直角三角形,掌握解直角三角形的方法,与特殊三角函数值是解题关键4、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、【分析】根据tan46°tan45°=1cos46°即可比较【详解】46°45°tan46°tan45°=11cos46°tan46°cos46°故答案为:【点睛】此题主要考查三角函数值的大小比较,解题的关键是熟知三角函数的性质三、解答题1、126米/分钟【分析】过作于,则米,由解直角三角形求出AD和BD的长度,则求出AB的长度,即可求出小明的速度【详解】解:过作于,则米,同理:速度:631÷5126(米/分钟)【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD和BD的长度2、(1)见解析;(2)【分析】(1)作线段的垂直平分线即可;(2)由垂直平分线的性质求出,设,在三角形中利用三角函数即可求解【详解】(1)作图如下,(2)根据垂直平分线的性质知,在三角形中,设,在三角形中,【点睛】本题考查的是作图基本作图、线段垂直平分线的性质、三角函数,熟知线段垂直平分线的作法是解答此题的关键3、(1)1;(2)13【分析】(1)根据特殊角的三角函数值、负整数指数幂及实数的绝对值的含义即可完成;(2)根据菱形的性质可得AB=AD,再由已知条件设,则由勾股定理可得AE,则由BE=8建立方程即可求得k,从而求得菱形的边长【详解】解:(1)原式.(2)四边形ABCD是菱形,.,设,则,即菱形的边长为13.【点睛】本题考查了特殊角的三角函数值、负整数指数幂及实数的绝对值,菱形的性质、三角函数及勾股定理,灵活运用这些知识是关键4、(1)13;(2)【分析】(1)首先根据的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度;(2)由,代值计算即可【详解】(1)在中,;(2)在中,【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系是解题的关键5、【分析】先由三角形的高的定义得出ADB=ADC=90°,再解RtADC,得出DC=1;解RtADB,得出AB=3,根据勾股定理求出BD= ,然后根据BC=BD+DC即可求解【详解】解:,即, DC=1,即,AB=3在中,BC=BD+DC=【点睛】本题考查了三角函数正切和正弦的应用,做题的关键是求出BD和DC的长

    注意事项

    本文(难点解析北师大版九年级数学下册第一章直角三角形的边角关系专项测试试卷.docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开