欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学几何初步知识总复习总结ppt课件.ppt

    • 资源ID:28228279       资源大小:869.50KB        全文页数:52页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学几何初步知识总复习总结ppt课件.ppt

    几何初步知识总复习建议几何初步知识总复习建议 一一. .几何知识是小学数学学习的重要内容几何知识是小学数学学习的重要内容 二二. .小学几何教学是中学数学学习的基础小学几何教学是中学数学学习的基础 三三. .沟通小学几何知识的内在联系沟通小学几何知识的内在联系 四四. .掌握小学几何知识的思想方法掌握小学几何知识的思想方法 五五. .解决小学几何知识的典型题目解决小学几何知识的典型题目一、一、几何知识是小学数学学习的重要内容几何知识是小学数学学习的重要内容 几何知识的教学是运用实物、图形等直观教具、学具,让学生通过观察、分析、比较来发现几何形体的特征,掌握有关的知识。重视直观教学,加强动手操作,发展学生的空间观念,是几何教学的重要规律。 二、二、小学几何教学是中学数学学习的基础小学几何教学是中学数学学习的基础1 小学已经出现的平面图形的有关计算公式,初中不再作为新知识重新出现 2小学已经出现过的某些几何概念,初中将重新表述,但与小学教材里的表述没有本质上的差异。 如平行线的定义,初中和小学都说:“在同一平面内,不相交的两条直线叫做平行线。”而梯形的定义,小学表述为“只有一组对边平行的四边形叫做梯形”。初中则表述为“一组对边平行而另一组对边不平行的四边形叫做梯形”。尽管在表述句式上略有不同,但没有本质上的差异。 4小学里已经出现过的性质、定理,因为缺乏理论依据,初中将加以推理证明。3小学里已经出现过的某些几何概念,初中将重新表述,且与小学的表述有本质上的差异。如小学里三角形的定义表述为“由三条线段围成的图形,这样的图形叫做三角形”。“围成”不能确切地表示“首尾连接”,因为交叉,重叠也能是围成。初中则表述为“由不在同一直线上的三条线段首尾顺次连接所组成的图形叫做三角形”。“不在同一直线上”与“首尾顺次连接”都突出了三角形定义上的本质属性。三、三、沟通小学几何知识的内在联系沟通小学几何知识的内在联系 等边等边三角形三角形边边正方形正方形角角圆环圆环相交相交角角平行平行(垂直)(垂直)直线直线射线射线线段线段直角直角钝角钝角平角平角锐角锐角周角周角点点线线面面体体圆圆三角形三角形四边形四边形 等等腰腰三三角角形形锐角三角形锐角三角形直角三角形直角三角形钝角三角形钝角三角形平行平行四边四边形形长方形长方形梯梯形形旋旋转转体体圆柱圆柱套管套管长方体长方体正方体正方体多多面面体体圆锥圆锥多边形多边形不不等等边边三三角角形形扇形扇形第一部分:平面图形复习第一部分:平面图形复习圆圆C= d=2 rC= d=2 rS= rS= r2 2S= (a+b)hS= (a+b)h21周长周长面积面积长方形长方形C=2(a+b)C=2(a+b)S=abS=ab正方形正方形S=aS=a2 2平行四边形平行四边形S=ahS=ah三角形三角形S= ahS= ah21梯形梯形C=4aS=r2S=abS=a2S= ah21 s= (a+b)h21S=ahrr平面图形面积计算公式推导过程平面图形面积计算公式推导过程S= (a+b)h21S= ah21S=ahS=ab(h)S=a2平面图形面积计算公式的联系平面图形面积计算公式的联系安排如下活动,可以进一步帮助复习。 1.在方格纸上,画周长为12.56的平面图形,看哪个组画的多。 2.你能计算它们的面积吗? 3.小组交流,你们还发现了什么?可能出现情况 1.画圆形,半径为2,唯一一种画法,面积为12.56。 2.画长方形,根据长和宽不同情况可以有许多种不同情况,但它们长宽的和一定是6.28。会发现,长和宽越接近,面积越大;长和宽相等时,面积最大。 3.画三角形,应满足两边之和大于第三边的基本条件。如果画一般三角形,不易求出面积,因不知道三角形的高;如果画直角三角形,需考虑是否符合勾股定理。 4.画平行四边形,易画而不知道高,不易求出面积。 5.画梯形,如果画一般梯形,不易求出面积,因不知道梯形的高;如果画直角梯形,需考虑是否符合勾股定理。or=2r:12.562 =2S:22 =12.563.143.145.281324.283.2815.28=5.2824.28=8.563.143.14=9.859633.28=9.844.282普通平行四边形易画而不知道高,不易求出面积。4.981.31.20.54.48这个平行四边形符合这个平行四边形符合勾股定理:勾股定理:0.52+1.22=1.324.981.2=5.9765322.56如果画一般梯形,不易求出面积,因不知道梯形的高。3 3 0.284.285这个梯形符合这个梯形符合勾股定理:勾股定理:32+42=52(4.28+0.28)32=6.841.1.棱长总和:长方体棱长总和:长方体, ,正方体都有正方体都有1212条棱条棱2.2.表面积:表面积: 长方体:长方体:S S长长= =(ab+ac+bcab+ac+bc)2 2 正方体:正方体:S S正正=6a=6a2 2 圆柱:圆柱:S S侧侧 =C=C底底h h S S表表 = S= S侧侧+2S+2S底底 (S S侧侧+S+S底底)第二部分:第二部分:立体图形复习立体图形复习3.3.体积体积: :V V长长=abh=Sh=abh=ShV V正正=a=a3 3= =S Sh hV V长长=Sh=ShV V圆柱圆柱=S S底底h h31S S底底h hV V锥锥= = C圆圆hC圆圆hrr2圆柱体表面积=底面周长(高+半径)当无盖(或底)时所需材料面积 底面周长(高+ 半径)圆柱表面积计算方法(补充)圆柱表面积计算方法(补充)C长方形长方形C正方形正方形C圆圆hhhC三角形三角形hS侧侧=Ch直柱体侧面积直柱体侧面积直柱体表面积直柱体表面积= =侧面积侧面积+2+2倍底面积倍底面积直柱体侧面积和表面积直柱体侧面积和表面积V=abhV=a3V=shV=sh直柱体直柱体直柱体体积直柱体体积三棱柱三棱柱:V=sh四棱柱:四棱柱:V=sh等底等高时V V柱柱= 3V= 3V锥锥V V锥锥= V= V柱柱等底等体积时h h锥锥= 3h= 3h柱柱h h柱柱= h= h锥锥圆柱与圆锥底面积、高、体积之间的关系圆柱与圆锥底面积、高、体积之间的关系等高等体积时s s锥锥= 3s= 3s柱柱s s柱柱= s= s锥锥如左图所示,圆锥的高是圆柱的 ,圆柱与圆锥底面积的比是5:4,圆锥的体积是圆柱的 。32 可以按份列表来解答问题可以按份列表来解答问题2 25 54 4高底面积体积圆柱圆锥3 31515383815 =15 =458四、四、掌握小学几何知识的思想方法掌握小学几何知识的思想方法 1.渗透数形结合思想。 某部队有解放军战士若干人,正好排成一个方阵,若将某部队有解放军战士若干人,正好排成一个方阵,若将此方阵改排成长方阵,因而减少此方阵改排成长方阵,因而减少6行,同时各行均增加行,同时各行均增加10人。人。问战士人数是多少?问战士人数是多少?解:设原方阵每行解:设原方阵每行x人。人。 6x=10(x-6) 6x=10 x-60 4x=60 x=151515=225(人)(人)2.渗透分类思想 分类就是把所研究的问题按照某种标准分类就是把所研究的问题按照某种标准分成若干种情况,然后分情况解决问题,使整分成若干种情况,然后分情况解决问题,使整个问题得到解决。小学几何中已学过分类的问个问题得到解决。小学几何中已学过分类的问题,如三角形按角分,可分为锐角三角形、直题,如三角形按角分,可分为锐角三角形、直角三角形、钝角三角形。角三角形、钝角三角形。直角三角形直角三角形锐角三角形锐角三角形钝角三角形钝角三角形三角形按角分类三角形按角分类3.渗透转化思想 在研究数学问题时,将未解决的问题在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等,这样的一将图形问题转化成数量问题等等,这样的一种思想称为转化思想。种思想称为转化思想。 解法:解法:1628=4(cm)利用转化的思想解决问题利用转化的思想解决问题 例例2 2:下图长方形中黄色部分面积为a平方厘米,求长方形面积。S阴影阴影=S长方形长方形解答:因为长方形是黄色面积的解答:因为长方形是黄色面积的2倍,所以用倍,所以用a2=2a平方平方厘米。厘米。在一个底面半径是10厘米的圆柱形状的容器中装着一些水,水里放了一个底面半径5厘米的圆锥形状的铅锤。当铅锤从容器中取出后,容器中水面下降5毫米。铅锤的高是多少厘米?10cm5mm正确列式:(1023.140.53)(3.1452)错例1:(1023.140.5)(3.1452)错例2:(1023.1453)(3.1452)等积变形等积变形例例3 3:列方程解:设铅锤的高x厘米。 52 x=102 0.531 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,水深8厘米。现将一个底面积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面。现在的水深多少厘米?解法一:解法一: 808(8016) =640 64 =10(厘米)(厘米)解法二:设水面上升解法二:设水面上升x厘米。厘米。 80 x=16(8+x) 80 x=128+16x 64x=128 x=2 8+2=10(厘米)(厘米)例例4:4 、渗透归纳思想 研究一般性问题时,在观察和实验的研究一般性问题时,在观察和实验的基础上,归纳出由特殊现象到一般现象基础上,归纳出由特殊现象到一般现象的规律和性质,这种从特殊到一般的思的规律和性质,这种从特殊到一般的思维方式称为归纳思想。维方式称为归纳思想。 C长方形长方形C正方形正方形C圆圆hhhC三角形三角形hS侧侧=Ch直柱体侧面积直柱体侧面积直柱体表面积直柱体表面积= =侧面积侧面积+2+2倍底面积倍底面积直柱体侧面积和表面积直柱体侧面积和表面积V=abhV=a3V=shV=sh直柱体直柱体直柱体体积直柱体体积五、解决小学几何知识的典型题目1. 1.正方形与圆正方形与圆2. 2.最大与最小最大与最小3. 3.正方体所有可能的截面类型正方体所有可能的截面类型4. 4.立体图形的切割与拼合立体图形的切割与拼合5 .5 .杂题杂题 圆的半径扩大(或缩小)圆的半径扩大(或缩小)a a倍,直径和周长也随倍,直径和周长也随着扩大(或缩小)着扩大(或缩小)a a倍,而圆的面积则扩大(或缩倍,而圆的面积则扩大(或缩小)小)a a2 2倍。倍。 圆的半径与直径、周长成正比例,半径与面积圆的半径与直径、周长成正比例,半径与面积不成比例。不成比例。 正方形的边长扩大(或缩小)正方形的边长扩大(或缩小)a a倍,周长也扩倍,周长也扩大(或缩小)大(或缩小)a a倍,而面积扩大(或缩小)倍,而面积扩大(或缩小)a a2 2倍。倍。 正方形边长与周长成正比例,边长与面积不成正方形边长与周长成正比例,边长与面积不成比例。比例。1. 1.正方形与圆正方形与圆S圆圆= S正方形正方形S正方形正方形= S圆圆44S圆圆= S正方形正方形S正方形正方形= S圆圆22S圆圆= S正方形正方形S正方形正方形= S圆圆1图解图解: 独立思考,认真观察,下面图形中哪个阴影部分的面积大?(每个正方形边长相等) (1)(2)(3)(4)(5)(6) 2.最大与最小40cm40cm20cm20cm指定深度为5厘米例例1: 1:下图是一张长下图是一张长4040厘米,宽厘米,宽2020厘米的长方形铁厘米的长方形铁板,要把这张铁板焊一个深板,要把这张铁板焊一个深5 5厘米的盒子(无厘米的盒子(无盖),让这个长方形铁盒的容积有三种大小不同盖),让这个长方形铁盒的容积有三种大小不同的规格,应该怎样设计与使用这块铁板?的规格,应该怎样设计与使用这块铁板?容积最大解:解:20205 =2000(平方厘米)(平方厘米)解:解:30105 =1500(平方厘米)(平方厘米)解:解:35105 =1750(平方厘米)(平方厘米)分析与解:分析与解:甲圆柱的底面半径为5厘米,高10厘米。乙圆柱底面半径10厘米,高5厘米。这两个圆柱的表面积谁大?大的表面积是小的表面积的多少倍?解法一:解法一:利用所给条件分别求出两个 圆柱的表面积,再求倍数关系。510510甲乙解法二:解法二:S甲表甲表:S乙表乙表 =2 r甲甲( h甲甲+ r甲甲): 2 r乙乙( h乙乙+ r乙乙) = r甲甲( h甲甲+ r甲甲) : r乙乙( h乙乙+ r乙乙) =r甲甲: r乙乙 = 5 :10 =1 : 2例例2 2截面面积最小截面面积最小1224 412244截面面积最大截面面积最大1224412244(单位:厘米)长方体垂直于长、宽、高的截面长方体垂直于长、宽、高的截面 例例3 3:要把3本长20厘米、宽12厘米、高6厘米的现代汉语词典包装起来,至少要准备多少平方厘米的包装纸?(重合处不计)分析:分析:只要使长方体物体最大的面重合,就能使包装纸的表 面积最小。 用3个长方体的表面积总和减去4个重合面面积。 (2012+206+126)23-20124 20122+(206+126)23 正方体的截面中,不可能出现直角三角形、钝角三角形,可能出现锐角三角形、等边或等腰三角形3.正方体所有可能的截面类型 可能出现正方形、矩形不可能出现非矩形的平行四边形及直角梯形,可能出现等腰梯形可能出现五边形,不可能出现正五边形可能出现正六边形及六边形不可能出现七边形及多于七边的多边形不可能出现七边形及多于七边的多边形 研究者研究者北大附中学生:王明天北大附中学生:王明天 陆程遂陆程遂 长方形长方形正方形正方形圆圆椭圆椭圆4.立体图形的切割三角形三角形圆圆 柱柱长方体长方体圆锥圆锥圆圆截成圆截成圆锥和圆锥和圆台台6 6 把两个底面半径2厘米,高10厘米的圆柱拼成一个大圆柱,表面积增加了多少平方厘米? 将一个底面直径12厘米,高4厘米的圆柱形木料沿底面直径和高,从上到下劈成相等的两块(如图),每块木料的表面积是多少平方厘米?62 2 将一块圆柱形状的木料如下图劈开,拼成了一个近似的长方体。这个近似长方体的表面积是多少平方分米?立体图形的切拼实例立体图形的切拼实例从一个棱长10厘米的正方体木块上截去一个棱长2厘米的小正方体,剩下的表面积是多少平方厘米?正方体切割正方体切割表面积不变101010106 6表面积多了2个小正方形的面积101010106+26+22 22 2表面积多了4个小正方形的面积101010106+26+22 24 4abab在 复习“平行”概念:在同一平面内,两条永不相交的直线互相平行。老师 可以出示下列几组变式让学生去分辨并感知:例4:运用变式,把握实质 让学生说说,三幅图中线a与线b是否平行,为什么?通过这组变式练习,我相信学生有可能真正领会“平行”的实质了。 例例1 1:小洁给妈妈买了一件生日礼物。礼品的包装盒长25厘米,宽10厘米,高4厘米。售货员用丝带如图这样进行捆扎,做蝴蝶结用了15厘米。捆扎用的丝带全长多少厘米?252510104 425252+102+104+44+46+156+155 . 5 . 杂题杂题解法一解法一:空圆柱容积+装有液体的圆柱容积=瓶子的容积。 3.143.145 52 2(36 -3036 -30)+3.14+3.145 52 22424解法二:解法二:空圆柱与装有液体的圆柱等底,将它们拼在一起,成为一个底面直径10厘米,高为30厘米(36-30+24)的圆柱体,求出这个圆柱体的容积,就计算出了瓶子的容积。3.143.145 52 2(36-30+2436-30+24)半径半径 10102=52=5(厘米)(厘米)302436 (单位:厘米单位:厘米)10例例2:瓶子的容积是多少?瓶子的容积是多少?解法四:解法四:与上面想法类似,可以求出空圆柱的容积后再乘5246+1 ,就可以得到瓶子的容积。302436 (单位:厘米单位:厘米)103.143.145 52 2(36-3036-30)(4+14+1)解法三:解法三:先求出空圆柱的高6厘米,在等底的情况下,6厘米是24厘米的几分之几,那么高为6厘米的圆柱的容积就是高为24厘米的圆柱容积的几分之几。因此求出左图的圆柱容积后再加上这个容积的 就可以了。41 3.143.145 52 22424(1+ 1+ )41其他解法略其他解法略 长方形周长长方形周长4040厘米,长与宽的比为厘米,长与宽的比为3 3:1 1,这个长方形的面积是多少?,这个长方形的面积是多少? 长方体棱长总和长方体棱长总和120120厘米,长、宽、高厘米,长、宽、高的比为的比为3 3:2 2:1 1,这个长方体的体积是多,这个长方体的体积是多少立方厘米?少立方厘米?131133错例:(40 ) (40 ) 错例:120123312321201231120例例3:周长、棱长总和与各边之比周长、棱长总和与各边之比

    注意事项

    本文(小学几何初步知识总复习总结ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开