难点详解京改版八年级数学下册第十四章一次函数专项训练练习题.docx
-
资源ID:28228402
资源大小:446.28KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解京改版八年级数学下册第十四章一次函数专项训练练习题.docx
京改版八年级数学下册第十四章一次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数ykx+b的图象如图所示,则下列说法错误的是()Ay随x的增大而减小Bk0,b0C当x4时,y0D图象向下平移2个单位得yx的图象2、函数y的自变量x的取值范围是()Ax0Bx1Cx±1D全体实数3、变量,有如下关系:;其中是的函数的是( )ABCD4、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD5、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A BC D6、一次函数y=kx+b(k0)的图象如图所示,当x>2时,y的取值范围是( )Ay<0By>0Cy<3Dy>37、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过0.25小时两摩托车相遇8、一次函数的一般形式是(k,b是常数)( )Ay=kx+bBy=kxCy=kx+b(k0)Dy=x9、小亮从家步行到公交车站台,等公交车去学校图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系则小亮步行的速度和乘公交车的速度分别是( )A100 m/min,266m/minB62.5m/min,500m/minC62.5m/min,437.5m/minD100m/min,500m/min10、正比例函数ykx的图象经过一、三象限,则一次函数ykxk的图象大致是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)一次函数y=kx+b(k0)的图象经过点(0,b)当k>0时,y的值随着x值的增大而_;当k<0时,y的值随着x值的增大而_(2)形如_(k是常数,k_0)的函数,叫做正比例函数,其中比例系数是_2、某长途汽车客运公司规定旅客可免费携带一定质量的行李当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:304050(元)468则旅客最多可免费携带行李的质量是_kg3、在函数的图象上有,三个点,则,的大小关系是_(用“>”连接)4、在中,的取值范围为_5、一次函数与的图象如图所示,则关于、的方程组的解是_三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,点,给出如下定义:若P为内(不含边界)一点,且AP与的一条边相等,则称P为的友爱点(1)在,中,的友爱点是_;(2)如图2,若P为内一点,且,求证:P为的友爱点;(3)直线l为过点,且与轴平行的直线,若直线上存在的三个友爱点,直接写出的取值范围2、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球()A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:A商场:买一盒大气球,送一盒小气球;B商场:一律九折优惠;(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?3、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当时,单价y为_元;当单价y为8.8元时,购买量x(千克)的取值范围为_;(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?4、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F, (1)求点D的坐标和AB的长; (2)若BDEAFE,求点E的坐标; (3)若点P、点Q是直线BD、直线DF上的一个动点,当APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标5、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 -参考答案-一、单选题1、B【解析】【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数ykx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数ykx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x4时,函数图象在轴的下方,所以y0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.2、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.3、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数4、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)5、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0x、x、x2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,当0x时,y=120-60x-90x=-150x+120;当x时,y=60(x-)+90(x-)=150x-120;当x2是,y=60x;由函数解析式的当x=时,y=150×-120=80故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键6、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x2时,y0【详解】一次函数y=kx+b(k0)与x轴的交点坐标为(2,0),y随x的增大而减小,当x2时,y0故选:A【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当k0,图象经过第一、三象限,y随x的增大而增大;当k0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为7、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:20÷0.6(km/h),则甲行驶0.3h时的路程为:×0.310(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:×0.5(km),故选项C正确;乙的速度为:20÷0.540(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;故选:D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答8、C【解析】【分析】根据一次函数的概念填写即可【详解】解:把形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数,故选:C【点睛】本题考查了一次函数的概念,做题的关键是注意k09、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(3016)min走了(81)km,故公交车的速度为7000÷14500m/min故选:D【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一10、A【解析】【分析】由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况【详解】解:正比例函数ykx的图象经过一、三象限一次函数的图象经过一、二、四象限故选:A【点睛】本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键二、填空题1、 增大 减小 y=kx k【解析】【分析】(1)根据一次函数的性质填写即可;(2)根据正比例函数得概念填写即可【详解】解:(1)函数为一次函数 ,当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小;(2)由正比例函数概念可知:把形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中比例系数是k故答案为:增大 减小 y=kx k【点睛】本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写2、10【解析】【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可【详解】解:y是x的一次函数,设y=kx+b(k0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,旅客最多可免费携带行李的质量是10kg,故答案为:10【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量3、【解析】【分析】根据一次函数图象的增减性来比较、三点的纵坐标的大小【详解】解:一次函数解析式中的,该函数图象上的点的值随的增大而减小又,故答案为:【点睛】本题考查了一次函数图象上点坐标特征,一次函数的增减性,解题的关键是掌握一次函数的增减性,即在中,当时随的而增大,当时,随的增大而减小4、x>-3【解析】【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案【详解】解:由题意得:2x+6>0,解得:x>-3,故答案为:x>-3【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键5、【解析】【分析】根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解【详解】解:一次函数与的图象交点的横坐标为,当,是方程组的解故答案为:【点睛】本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键三、解答题1、(1)P1、P2;(2)见解析;(3)0m2【解析】【分析】(1)根据A(x1,y1)、和B(x2,y2)之间的距离公式AB=以及友爱点定义解答即可;(2)由题意易知OAB=OCA=OCB=45°,进而可求得PAC=OCP=30°,则可得出ACP=APC=75°,根据等角对等边和友爱点定义即可证得结论;(3)由题意,ABC在友爱点P满足AP=BP或AP=PC或AP=BC=AC三种情况,分别讨论求解即可【详解】解:(1)点,关于y轴对称,点在y轴上,AP1=BP1,故P1是的友爱点;AP2= ,CP2= ,AP2= CP2,故P1是的友爱点;AP3=,CP3=,BP3=,BC=,故P3不是的友爱点,综上,的友爱点是P1、P2,故答案为:P1、P2;(2)点,OA=OB=OC,AC= BC, BOC=90°,OAB=OCA=OCB=45°,PAC=OCP=30°,ACP=45°+30°=75°,APC=180°PACACP=180°30°75°=75°,ACP=APC,AP=AC=BC,P为的友爱点;(3)由题意,ABC的友爱点P满足AP=BP或AP=PC或AP=BC三种情况,若AP=BP,则点P在线段AB的垂直平分线上,即点P在y轴线段OC上,若AP=PC,则点P在线段AC的垂直平分线上;若AP=BC,则点P在以点A为圆心,BC即AC长为半径的圆上,如图,设AC的中点为G,则G的坐标为(2,2),由图可知,当直线l为过点G和过点且与轴平行的直线在x轴之间时,直线上存在的三个友爱点,m的取值范围为0m2【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键2、(1)A:y=10x+160,B:y=9x+180;(2)A商场更合算【解析】【分析】(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;(2)先求A、B两商场花费函数的值,比较大小即可【详解】解:(1)A:y=50×4+10(x-4)=10x+160,B:y=(50×4+10x)×90%=9x+180; (2)当时,A:10×10+160=260元,B:9×10+180=270元,260270,选择在A商场购买比较合算【点睛】本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键3、(1)10;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元【解析】【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;(3)将代入(2)函数解析式即可【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元故答案为:10;(2)设函数图象的解析式 (k是常数,b是常数,),图象过点,可得:,解得,函数图象的解析式:;(3)当时,答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键4、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)【解析】【分析】(1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标; (2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标; (3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,APQ=90°时,过点Q作QMBD于点M,过点A作HABD于点H,易证APHPMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,QPA=90°,过点Q作QHBD于点H,过点P作PMx轴于点M,设点Q(a,),易证PHQAPM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.【详解】解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B, 令x=0,y=4;y=0,x=-2点A、B的坐标分别为:(-2,0)、(0,4),OA=2,OB=4由勾股定理得,AB= ,四边形BOCD是正方形BD=OB=CD=OC=4,D的坐标为(-4,4)(2)解:BDEAFE,AF=BD=4,OF=2F(2,0),设直线DF的解析式为 把D(-4,4),F(2,0)代入得, 解得, 直线DF的解析式为 联立方程组 解得, 点E的坐标为(-1,2)(3)如图, 当点P在线段BD上时点A(-2,0),点F(2,0) AF=2-(-2)=4, 当点Q与点F重合时,DABD于点P, DA=AF=4,DAF=90°, 点Q(2,0); 如图,当点Q在DF的延长线上,APQ=90°时,过点Q作QMBD于点M,过点A作HABD于点H, 易证APHPMQ,BH=2=AO QM=HP,AH=PM=4, 设点Q(a,) ; 解之:a=14 当a=14时,y=-8, 点Q(14,-8); 如图,当点Q在FD的延长线上时,QAP=90°,过点Q作QHx轴于点H,过点P作PMx轴于点M, 易证AQHAPM, QH=AM,PM=AH=4, OA=2, OH=4+2=6, 点P的横坐标为-6 当x=-6时y, 点Q;如图,当点Q在FD的延长线上时,QPA=90°,过点Q作QHBD于点H,过点P作PMx轴于点M, 设点Q(a,) 易证PHQAPM, PM=PH=4,AM=QH, BH=-a,OM=-a-4, AM=QH=2-(-a-4)=a+6,QH= 解之: 点Q 点Q的坐标为:或或(14,-8)或(2,0).【点睛】本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识5、(1)见解析;(2)(0,)【解析】【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质