2021年高考数学模拟试题十四含解析.doc
2021年高考数学模拟测试卷一、单项选择题(本大题共8小题,每小题5分,共计40分在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1. 已知函数的定义域为集合M,集合N,则( )A. 1,3B. 0,2C. 0,1D. 1,4【答案】B【解析】【分析】由已知条件求出集合M,结合集合N,由交集的性质可得的值.【详解】解:由题意:令得,所以,所以,故选:B【点睛】本题主要考查交集的性质,考查学生对基础知识的理解,属于基础题.2. 平流层是指地球表面以上到的区域,下述不等式中,能表示平流层高度的是( )A. B. C. D. 【答案】D【解析】【分析】根据绝对值的几何意义即可得解.【详解】解析:如图:设,则的中点为,由距离公式可得答案:D【点睛】此题考查根据绝对值的几何意义解决实际问题,关键在于正确理解绝对值的几何意义.3. 命题“”的否定是( )A. B. C. D. 【答案】C【解析】【分析】根据全称命题的否定形式书写.【详解】命题“”的否定是,.故选C【点睛】本题考查全称命题的否定,属于基础题型.4. 某网站为了了解某“跑团”每月跑步的平均里程,收集并整理了2019年1月至2019年11月期间该“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图根据折线图,下列结论正确的是( )A. 月跑步平均里程的中位数为6月份对应的里程数B. 月跑步平均里程逐月增加C. 月跑步平均里程高峰期大致在89月份D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳【答案】D【解析】分析】由折线图的意义、及中位数的定义即可判断出A错误;根据折线图中增减的几何意义可以判定B错误;根据纵轴的意义,观察最高点的大约月份可判定C错误,根据图形的波动幅度可以判定D正确.【详解】解:由折线图可知月跑步平均里程比6月份高的只有9,10,11,共3个月,低的有1,2,3,4,5,7,8共7个月,故6月份对应里程数不是中位数,因此A不正确 ;月跑步平均里程在1月到2月,7月到8月,10月到11都是减少的,故不是逐月增加,因此B不正确;月跑步平均里程高峰期大致在9,10,11三个月,8月份是相对较低的,因此C不正确;从折线图来看,1月至5月的跑步平均里程相对于6月至11月,波动性更小,变化比较平稳,因此D正确.故选:D.【点睛】本题考查了折线图的意义、及其统计量,考查了推理能力与计算能力,属于基础题.5. 已知二次函数,且,是方程的两个根,则,的大小关系可能是( )A. B. C. D. 【答案】D【解析】【分析】根据题意,结合二次函数解析式和零点的定义,可知,而抛物线开口向上,可得,在两根之外,结合选项即可得出答案.【详解】解:由题可知,并且是方程的两根,即有,由于抛物线开口向上,可得,在两根之外,结合选项可知A,B,C均错,D正确,如下图.故选:D.【点睛】本题考查函数的零点的定义以及二次函数的图象与性质,属于基础题.6. 我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸若盆中积水深九寸,则该处的平地降雨量(盆中积水体积与盆口面积之比)为( )(台体体积公式:V台体,分别为上、下底面面积,h为台体的高,一尺等于10寸)A. 3B. 4C. D. 【答案】A【解析】【分析】由题意计算出盆中积水的体积除以盆口面积可得该处的平地降雨量.【详解】解:由题意可得:池盆盆口的半径为14寸,盆底半径为6寸,盆高为18寸,因为积水深九寸,故水面半径为寸,则盆中水的体积为(立方寸),故该处的平地降雨量为:(寸),故选:A.【点睛】本题主要考查圆台的体积计算公式,考查学生的基础计算能力,属于基础题.7. 已知符号函数,若,则( )A. B. C. D. 【答案】C【解析】【分析】根据题意,求出的解析式,根据新函数的定义,分类讨论可得,即可得出答案【详解】解:根据题意,当时,可知,则,当时,可知,则,当时,可知,则,则有,所以.故选:C.【点睛】本题考查分段函数的应用,涉及新函数的定义,属于基础题8. 若定义域为的函数的导函数为,并且满足,则下列正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据题意,可知,构造函数,利用导数研究函数的单调性,可知在上单调递增,得出,整理即可得出答案【详解】解:由题可知,则,令,而,则,所以在上单调递增,故,即,故,即,所以.故选:B.【点睛】本题考查根据函数的单调性比较大小,考查构造函数和利用导数解决函数单调性问题,属于中档题二、 多项选择题(本大题共4小题,每小题5分, 共计20分在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9. 若集合M1,1,3,5,集合N3,1,5,则正确的是( )A. xN,xMB. xN,xMC. MN1,5D. MN3,1,3【答案】BC【解析】【分析】根据集合M1,1,3,5,集合N3,1,5,逐个判断即可得解.【详解】对A,3 N,3M,故A错误;对B, 1N,1M,故B正确;对C,MN1,5,故C正确;对D,MN3,1,1,3,5,故D错误.故选:BC.【点睛】本题考查了集合及元素相关关系,也考查了集合的运算,其方法是对集合的元素进行分析判断,属于基础题.10. 下列不等式成立的是( )A. 若ab0,则a2b2B. 若ab4,则ab4C. 若ab,则ac2bc2D. 若ab0,m0,则【答案】AD【解析】【分析】由不等式的性质对各个选项进行推理、验证可得正确答案.【详解】解:对于A,若,根据不等式的性质则,故A正确;对于B,当,时,显然B错误;对于C,当时,故C错误;对于D,因为,所以,所以所以,即成立,故D正确故选AD【点睛】本题主要考查不等式的性质及应用,考查学生的推理论证能力,属于基础题.11. 在长方体ABCDA1B1C1D1中,AA1AB4,BC2,M,N分别为棱C1D1,CC1的中点,则下列说法正确的是( )A. MN平面A1BDB. 平面MNB截长方体所得截面的面积为C. 直线BN与B1M所成角为60°D. 三棱锥NA1DM的体积为4【答案】ACD【解析】【分析】画出长方体ABCDA1B1C1D1,结合图像,逐个判断即可得解.【详解】对A,由MN,所以 MN, MN平面A1BD,显然平面A1BD,平面A1BD,故A正确;根据两平行平面和同一平面相交,交线平行的性质可得:,所以平面MNB截长方体所得图像为梯形,又因为,解得面积为,故B错误;对C,做DC中点H,则直线B1MBH,在BNH中,BH=HN=BN=,故BNH为等边三角形,直线BN与BH所成角为60°,所以直线BN与B1M所成角为60°,故C正确;对D,由,可得三棱锥NA1DM的体积为4,故D正确.【点睛】本题考查了空间线面关系,考查了异面直线所成角以及转体法求体积,考查了空间想象能力和转化思想,属于中当题.12. 已知函数,且,则关于的方程实根个数的判断正确的是( )A. 当时,方程没有相应实根B. 当或时,方程有1个相应实根C. 当时,方程有2个相异实根D. 当或或时,方程有4个相异实根【答案】AB【解析】【分析】先由题中条件,得到;根据导数的方法,判定函数在时的单调性,求函数值域,再由得出或;再根据函数零点个数的判定方法,逐项判定,即可得出结果.【详解】由得,则;所以,故,当时,则,由得;由得;则,又,时,;即时,;当时,;由解得或;A选项,当时,与都无解,故没有相应实根;故A正确;B选项,当或时,方程有1个相应实根,即只要一个根,则只需或,解得或;故B正确;C选项,当时,有三个根,有一个根,所以方程有4个相异实根;故C错;D选项,时,方程有两个解;有一个解,共三个解;当时,方程有两个解;有一个解,共三个解;当时,方程无解;方程有三个解,共三个解;故D错.故选:AB.【点睛】本题主要考查导数的方法研究方程的实根,考查方程根的个数的判定,属于常考题型.三、填空题(本大题共4小题, 每小题5分,共计20分请把答案填写在答题卡相应位置上)13. 为了解某社区居民的2019年家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元)6.27.58.0t9.8根据上表可得回归直线方程,则t_【答案】8.5【解析】【分析】根据线性回归直线过中心点,分别求出收入和支出的平均数,代入即可得解.【详解】分别求出收入和支出的平均数,可得:,代入可得:,解得:,故答案为:.【点睛】本题考查了线性回归直线方程,考查了线性回归直线过中心点的性质,易错点为直接代统计数据,计算量不大,属于基础题.14. 在的展开式中,的系数是_.【答案】10【解析】【分析】利用二项式定理展开式的通项公式即可求解.【详解】因为的展开式的通项公式为,令,解得.所以的系数为.故答案为:.【点睛】本题考查了二项式展开式的通项公式,需熟记公式,属于基础题.15. 若函数导函数存在导数,记的导数为如果对x(a,b),都有,则有如下性质:,其中n,(a,b)若,则_;在锐角ABC中,根据上述性质推断:sinAsinBsinC的最大值为_【答案】 (1). (2). 【解析】【分析】构造函数,求导,则,由正弦函数的图象可知成立,根据函数的性质,即可求得的最大值【详解】解:设,则,则,有如下性质:则,的最大值为,故答案为:,【点睛】本题考查函数的性质,考查正弦函数的性质,考查转化思想,属于中档题16. 已知正方体的棱长为4,以该正方体的一个顶点为球心,以为球的半径作球面,则该球面被正方体表面所截得的所有弧长的和为_【答案】【解析】【分析】根据题意,不妨以D为球心,画出图形,可知正方体的表面被该球面所截得的弧长有相等的三部分,即,利用弧长公式求出,乘以3即可得答案【详解】解:由题可知,以该正方体的一个顶点为球心,以为球的半径作球面,如图,不妨以为球心,球面被正方体表面所截得3段相等的弧长,与上底面截得的弧长,是以为圆心,以4为半径的四分之一的圆周,所以,该球面被正方体表面所截得的所有的弧长和为:.故答案为:.【点睛】本题考查正方体与球的截面问题,关键是理解截面与球的关系,弧与球心的位置关系,属于中档题.