欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    非线性模型-TARppt课件.ppt

    • 资源ID:28251099       资源大小:275KB        全文页数:31页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    非线性模型-TARppt课件.ppt

    引言0022211 ()0( )ttit iiitttiataiitxxaaaE aVar aax 一个纯随机时间序列 称为线性的,如果它能表示成 (1)其中 是常数, 是实数,是独立同分布随机变量序列,其分布函数是合理定义的。假定 的分布是连续的且。在许多场合下,我们进一步假定,甚至更强, 是高斯的。若,则 是弱平稳()tx的 即 的头两阶矩是随时间不变的。一般模型1112121211111,(|)(),(|)(),(2)(.)(.)(.)0tttttttttttttttttxFtFxxaaFxE xFg FVar xFh Fghh在本章,我们把 的模型写成它的条件矩形式。设是由时刻已有信息产生的域,典型的是由和中的元素线性组合组成的。给定的条件均值和条件方差分别是 其中和是有意义的函数,。这样,我们1121()()(1)(.)(.)(2)(.)(.)ttttttttttttxg Fh FaxgFhgxhx把模型限制于其中是标准化的抖动。对式中的线性序列 ,是中元素的线性函数,。非线性模型的发展就在于式中两个方程的扩展。若是非线性的, 称为均值非线性的。若是随时间变化的,则 是方差非线性的。双线性模型n双线性模型是由Granger和Anderson(1978)提出,并得到广泛研究。Subba Rao和Gabr(1984)讨论了这个模型的一些性质和应用,Liu和Brockwell(1988)研究了一般的双线性模型。双线性模型n双线性模型可以定义为:pqmstit ijtjijt itjti 1j 1i 1 j 1xcxax aa(, )(.)(.)(.)(.)ARMA p qARMAxaaxARMA上式比模型多了一个双线性项,因此可以看作模型的推广。当固定时,变成关于的线性模型;当固定时,变成的线性模型,因此称之为双线性模型。由于它是非线性模型,模型的定阶、判别准则、稳定性等远比模型复杂和困难得多。门限自回归模型(TAR)n门限自回归模型作为一类非线性模型,首先由Tong(1978,1983)和Tong、Lim(1980)提出。该模型设定某一特定的时点,,时间序列的运动方式从一种机制(regime)跳跃到了另一种机制,同时这种跳跃是离散的。门限自回归模型在拟合实际数据时具有较好的性质,但是由于建立门限自回归模型的步骤比较复杂,直到Ruey S.Tsay (1989)提出了相对来说比较简易的建模及检验方法后,这类模型才被人们广泛地应用。基本思路n在观测时序 的取值范围内引入 个门限值 (j=1,2,k),将时间轴分成k个区间,并用延迟步数 将 按 值的大小分配到不同的门限区间内,然后对不同区间内的 采用不同 模型来描述整个系统。 tx1k dtxt dx txAR011221,1,2,(3)().jjttjjtjtjptpjtjtdjtXXXrZrTAR一般的,如果时间序列X.满足:X. 则称为满足一个K段门限自回归模型基本模型10110111212d(,.,) ,1,2,., .,(,.,).jt dtpjkkjtkkZFxxxjkrrrrkTARp pppppp 其中为门限变量,在上可测,参数 被称为延迟变量,为正整数;初始值已知, r为门限值,满足-取正整数,为模型的段数,是独立同分布随机白噪声序列。满足上述条件的模型通常记为:TAR d,k,。当时,即模型满()p足在各段阶数相等时记为:TAR d,k, 。在实际应用中,由Tong(1978,1983)以及Tong,Lim(1980)提出了各种状态下涉及若干含有分离高阶AR(p)过程的不同状态的TAR模型,其状态的一般形式可表示为: (4)这里存在由 的值定义的两个可分离状态。 为TAR模型的门限值。1011111120211121.,.,tptpttttrt rttyyyayyyya1tyan门限自回归模型能够解释金融数据中经常表现出来的一些非线性性质:周期性和不对称性、波动的聚集性、波动的跳跃现象和时间的不可逆性。n它用分段线性模型来得到条件均值方程的更好逼近。而与传统的分段线性模型不同的是:传统的模型是允许模型的变化发生在时间空间上,TAR模型则是利用门限空间来改进线性逼近。n门限自回归模型在门限空间上是分段线性的,而且在此空间内能够提供精确的“local approximations”(局部近似值)。但是,在时间上它并不是分段线性的。也就是说,我们可以根据门限变量 取值的不同,将门限自回归模型看为分段线性的,而不是根据时间划分。在每一个时刻t,到底符合哪个阶段的线性模型,主要看 的取值。tdZtdZn我们不仅可以对序列本身做门限自回归,建立最基本的TAR模型。门限自回归模型还可以和其它的模型混合使用,建立混合的TAR模型。如TAR模型与GARCH的混合就是TAR-GARCH模型,这个混合模型弥补了GARCH模型在拟合实际数据中的不足。自激发门限回归模型(SETAR)nTAR模型是由AR模型发展而来的一类非线性模型,它有三种形式,其中一种为自激励(Self-Exciting) TAR模型,称为SETAR模型,它能够有效地描述非线性系统的自激振动现象。n其门限变量的选取是研究变量自身,而不象一般的TAR模型,门限变量为其他变量。( )( )( )( )0111.TAR(SETAR)tjjjjttptptjtdjtxxxxaxxk如果一个时间序列满足 当时 (5)称服从 个体制的自激发模型。011( )21( )0jkkjtjt djkdjkjaiidjxd 其中 和 是正整数, , , 满足的实数,上角标用来表示体制,是均值为 、方差为的序列,且对不同 是相互独立的,称为门限变量,参数 称为延迟参数,称为门限。二体制SETAR模型(1)(1)(1)(1)0111(2)(2)(2)(2)01112SETAR,0iidtptpttttptptttyyaycyyyayccdpa一个简单的二体制模型的表达式为:是门限参数, 被称为延迟参数,是一个正整数, 表示不同体制下作为解释变量的滞后因变量的滞后步长,误差项 是均值为 ,方差为的序列。SETAR模型的推广 115SETAR()OpenLoop TARttttt dxFFxxt对式的模型可以推广到只要求门限变量 为可测的 即,它是中元素的函数 情形,这时还要求 是平稳的,有在实直线的紧子集上连续的分布函数,并且在 时刻是已知的,这样的推广模型为开环模型。对TAR、SETAR模型来说,如何确定模型中的各个参数成为关键问题。因此,作为模型选择标准(MSC)的各种信息准则被提出来成为选择依据,除了最基本的AIC(Akaike Information Criterion)外,还包括:Wong和Li提出的AICc(bias-corrected AIC)、AICu(unbiased AIC)、BIC(bayesian information criterion);De Gooijer提出的交叉验证准则C(cross-validation criterion)、Cc(bias-corrected C)、Cu(unbiased C);hrvik和Schoier提出的BSC(bootstrap selection criterion);以及Pedro Galeanoa和Daniel Penab提出的改进模型选择标准(IMSC)。TAR建模步骤n建立一个门限自回归模型,我们首先需要确定一些参数:AR模型的阶数,延迟参数d,门限的段数k,和门限值 。确定这些之后我们就可以利用Tsay提出的方法建立门限自回归模型。n下面给出建立门限自回归模型的步骤:1.根据自相关和偏向关函数(和L-B-P统计量)或AIC准则或SC信息准则,选取AR模型的最高阶数;1,krr2.对模型进行非线性检验。3.选取延迟参数d的可能取值,d的范围是一个离散的集合。用最小二乘估计的方法估计参数,我们通常先估计d,在d已知的情况下,估计其它参数。4.对每一个取定的d,对模型做原假设:线性模型vs备择假设:门限自回归模型的检验。在这里我们用的是F-检验。5.根据第4步的检验结果,定出d的取值;6.确定门限的可能取值;7.对第6步中每个可能的门限值,做门限自回归模型的估计;8.选取使得AIC获得最小的门限值;9.对所估计的模型进行检验、评价,看看模型是否是充分的。所用的方法是对残差进行分析,看一下残差是否是独立同分布的或者是不相关的。对残差分析,我们可以借助于残差的自相关、偏向关函数,或者是L-B-P统计量;10.如果必要的话,用AIC或SC准则对估计好的模型进行改进,得出最符合实际的AR的阶数、延迟参数、门限变量。经济和金融中的应用n在金融中的一个重要应用是处理波动率对正、负收益率的不对称影响。nKugler(1993),Peel and Speight(1994),Chappell(1996)将该模型运用到外汇市场;nTiao and Tsay(1994),Potter(1995)运用该模型对美国的GDP进行了预测;nPotter(1995)、Peel and Speight (1995)分别运用SETAR模型对美国和英国的GDP进行了预测。nMontgomery,Zarnowitz(1998),Rothman(1998)成功的将该模型用于失业问题的研究;n国内也有学者对人民币实际汇率的非线性特征进行了研究。刘潭秋(2007)采用了不同的线性和非线性时间序列模型进行研究,结果表明,非线性的自激发(self-exciting)门限自回归模型(SETAR)和平滑转换自回归模型对人民币实际汇率历史数据有很好的拟合效果;平滑转移AR模型n对于SETAR模型的一种批评是它的条件均值方程不是连续的,门限 是条件均值的不连续点。鉴于这种批评,人们提出了平滑的TAR模型。jn门限自回归模型(TAR)允许机制变化是内生的,其中,变量决定了机制转换是可观测的,但是引起机制转换的门限却是不可直接观测的,转换机制是离散的;而平滑转换自回归模型(STAR)可以使在两个极端机制之间的变化成为平滑或逐渐的变化,因此, STAR模型在经济研究中最易模拟经济现实和突发性经济政策,这也使其成为了2000年以来国外计量经济学前沿领域追踪的热点。00,11,11 (; , )()(6) ( )0,(.)0(.) 1(.)tpptit it ditiitt dxxcxF xc caxSTAR pdxFFF如果时间序列满足 则称服从两个机制的模型,其中 是延迟变量,是过渡变量,控制两个机制间的转换。过渡参数决定了两个机制间过渡的平滑性和过渡速度的大小,c为两个机制间转换的门限值。是是一个连续的过渡函数,满足。在实际中,()()LogisticLSTARESTAR通常取为:函数、指数函数。两个函数21(; , )1 exp()(; , )1() t dt dt dt dLogisticF xcxcLogisticLSTARF xcexpxcESTAR 其中函数的表达式为 (7)式(6)和式(7)构成了平滑自回归模型,即模型指数函数的表达式为 (8)式(6)和式(8)构成了指数平滑自回归模型,即模型。n对于LSTAR模型:当 r + ,LSTAR模型SETAR模型当 r 0 ,LSTAR模型线性AR模型n对于ESTAR模型:当 r +,ESTAR模型线性AR模型当 r 0 ,ESTAR模型线性AR模型nLSTAR模型与ESTAR模型分别描述了两种不同类型的动态汇率行为:LSTAR模型意味高制度和低制度有不同的动态性,从一种制度向另一种制度的过渡是平滑的;而ESTAR模型则意味两个外制度有相似的动态性,其过渡区间有着不同的动态性。nSTAR模型的优点是条件均值函数是可微的,但经验表明其中的参数是难以估计的。特别地,大多数实证研究表明参数估计的标准差相当大,t比大致为1。这种不确定性会导致在解释所估计出的模型时复杂性较大。nSarantis(1999)分析了八大发达国家汇率走势,均呈现非线性特征,并检验了每个国家分别符合哪一种模型,ESTAR或者LSTAR。n徐国希(2006)基于非线性对数门限自回归模型(LSTAR)对我国人民币实际汇率进行了实证研究,得出人民币实际汇率对购买力平价的偏离具有均值回复特性,而这种均值回复的调整行为服从非线性LSTAR模型。n谢赤等人(2005)的基于STAR模型的人民币实际汇率行为描述中,采用STRA模型对人民币实际汇率行为进行建模,给出了人民币实际汇率行为较为准确的描述;n王俊等人(2006)的非线性时间序列模型分析STAR模型及其在经济学中的应用中,系统阐述了非线性时间序列STAR模型的理论过程,并以汇率均值回复为例,说明了在汇率研究上STAR模型的应用。参考文献1 H. Tong and K. S. Lim, Threshold Autoregression, Limit Cycles and Cyclical DataJ. Journal of the Royal Statistical Society, 1980, 42, 245-292.2 Ruey S. Tsay, Testing and Modeling Threshold Autoregressive ProcessesJ, Journal of the American Statistical Association, 1989,84,231- 240.3 Wai-Sum Chan; Albert C S Wong; Howell Tong, Some nonlinear threshold autoregressive time series models for actuarial useJ, North American Actuarial Journal, Oct 2004, 37-61.4 Nikolay Gospodinov, Testing for Threshold Nonlinearity in Short-Term Interest RatesJ, Journal of Financial Econometrics, 2005, Vol. 3, No. 3, 344371.5 靳晓婷,张晓峒,栾惠德,汇改后人民币汇率波动的非线性特征研究基于门限自回归TAR模型J,财经研究,2008,34,48-57.6崔庆霞,门限自回归模型在股票量价比中的应用D,华东师范大学.2006.7袁军, SETAR模型在GDP预测中的应用J.统计与决策,2007,5,18-20.8谢赤,戴克维,刘潭秋,基于STAR模型的人民币实际汇率行为的描述J.金融研究.2005.5.51-59.9刘潭秋,王巧玲,新加坡汇率管理的SETAR模型研究及启示J.系统工程,2006.7.67-72.10王俊,孔令夷,非线性时间序列分析STAR模型及其在经济学中的应用J.数量经济技术经济研究,2006.1.75-85.11刘柏,赵振全,基于STAR模型的中国实际汇率非线性态势预测J,数量经济技术经济研究,2008.6.3-11.12阎军,顾岚,门限自回归模型在经济分析和预测中的应用J.统计研究.1996.2.48-54.

    注意事项

    本文(非线性模型-TARppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开