2022年高中数学-课时达标检测函数模型的应用实例-新人教A版.docx
精选学习资料 - - - - - - - - - 精品资料 欢迎下载课时达标检测(二十四)一、挑选题函数模型的应用实例1一个模具厂一年中 12 月份的产量是 1 月份产量的 m倍,那么该模具厂这一年中产量的月平均增长率是 A.m 11 B.m 1212 11C. m1 D. m1 解析:选 D 设每月的产量增长率为 x, 1 月份产量为 a,就 a1 x 11ma,所以 1x11 m,即 x11 m1. 2某自行车存车处在某一天总共存放车辆 4 000 辆次,存车费为:电动自行车 0.3 元/辆,一般自行车 0.2 元/ 辆如该天一般自行车存车 x 辆次,存车费总收入为 y 元,就 y 与x 的函数关系式为 Ay0.2 x0 x4 000By0.5 x0 x4 000Cy 0.1 x1 2000 x4 000Dy0.1 x1 2000 x4 000解析:选 C 由题意得 y0.34 000x 0.2 x 0.1 x1 200. 3下面是一幅统计图,依据此图得到的以下说法中,正确的个数是 1 这几年生活水平逐年得到提高;2 生活费收入指数增长最快的一年是2022 年;因而生活水平有较3 生活价格指数上涨速度最快的一年是2022 年;4 虽然 2022 年生活费收入增长缓慢,但生活价格指数也略有降低,大的改善A1 B2 C3 D4 解析:选 C 由题意知, “ 生活费收入指数” 减去“ 生活价格指数” 的差是逐年增大的,故1 正确;“ 生活费收入指数” 在20222022 年最陡;故 2 正确;“ 生活价格指数” 在名师归纳总结 - - - - - - -第 1 页,共 5 页精选学习资料 - - - - - - - - - 精品资料 欢迎下载20222022 年比较平缓, 故3 不正确;“ 生活价格指数” 略呈下降,而“ 生活费收入指数”呈上升趋势,故 4 正确4 某 公 司 招 聘 员 工 , 面 试 人 数 按 拟 录 用 人 数 分 段 计 算 , 计 算 公 式 为 y 4x,1 x10,xN, 2 x10,10 x100,xN,1.5 x,x100, xN, 其中, x 代表拟录用人数,y 代表面试人数,如面试人数为60,就该公司拟录用人数为 B40 A15 C25 D130 解析:选 C 如 4x60,就 x1510,不合题意;如2x10 60,就 x25,满意题意;如 1.5 x60,就 x40100,不合题意故拟录用 25 人5某城市出租汽车的收费标准是:起步价为 6 元,行程不超过 2 千米者均按此价收费;行程超过 2 千米,超过部分按 或等候时, 汽车虽没有行驶,3 元/ 千米收费 不足 1 千米按 1 千米计价 ;另外,遇到堵车 但仍按 6 分钟折算 1 千米运算 不足 1 千米按 1 千米计价 陈先生坐了一趟这种出租车,车费 24 元,车上外表显示等候时间为11 分 30 秒,那么陈先生此趟行程的取值范畴是 B5,6 A5,6 C6,7 D6,7 解析:选 B 如按 x xZ 千米计价,就 程应属于区间 5,6 二、填空题6 x2 × 32× 3 24,得 x6. 故实际行6在不考虑空气阻力的情形下,火箭的最大速度 v 米/ 秒 和燃料的质量 M 千克 、火箭 除燃料外 的质量 m千克 的函数关系式是 v2 000 · ln 1M m. 当燃料质量是火箭质量的_倍时,火箭的最大速度可达 12 千米 / 秒解析:当 v12 000 时,2 000 · ln 1M m12 000 ,ln 1M m6, M me 61. 答案: e 61 7一水池有 2 个进水口、 1 个出水口, 2 个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0 点到 6 点,该水池的蓄水量如图丁所示名师归纳总结 - - - - - - -第 2 页,共 5 页精选学习资料 - - - - - - - - - 精品资料 欢迎下载给出以下 3 个论断:0 点到 3 点只进水不出水;3 点到 4 点不进水只出水;4 点到 6 点不进水不出水其中肯定正确的论断序号是 _解析:从 0 点到 3 点,两个进水口的进水量为 9,故正确;由排水速度知正确;4点到 6 点可以是不进水,不出水,也可以是开一个进水口 速度快的 、一个排水口,故不正确答案:8某化工厂准备投入一条新的生产线,但需要经环保部门审批后方可投入生产已知该生产线连续生产n 年的累计产量为f n 1 2n n12 n1 吨,但假如年产量超过150 吨,将会给环境造成危害为爱护环境,环保部门应给该厂这条生产线拟定最长的生产期限是_年解析:由题意知,第一年产量为a11 2× 1× 2× 3 3;以后各年产量分别为an f n f n1 1 12n n12 n1 2n n12 n1 3n 2 nN * ,令 3n 2150,得 1n5 2. 1n7,故生产期限最长为 7 年答案: 7 三、解答题名师归纳总结 9某租车公司拥有汽车100 辆,当每辆车的月租金为3 000 元时,可全部租出,当每第 3 页,共 5 页辆车的月租金每增加60 元时, 未租出的车将会增加一辆,租出的车每月需要爱护费160 元,- - - - - - -精选学习资料 - - - - - - - - - 未租出的车每月需要爱护费40 元精品资料欢迎下载1 当每辆车的月租金定为3 900 元时,能租出多少辆车?2 当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少?解: 1 租金增加了 900 元,900÷ 60 15,所以未租出的车有 15 辆,一共租出了 85 辆2 设租金提高后有 x 辆未租出,就已租出 100 x 辆租赁公司的月收益为 y 元,y3 000 60x100 x 160100 x 40x,其中 x0,100,xN,整理,得 y 60x 2 3 120 x284 000 60 x26 2324 560 ,当 x26 时, y324 560 ,即最大月收益为 324 560 元此时,月租金为 3 000 60× 26 4 560 元 10某公司生产一种产品,每年需投入固定成本 0.5 万元, 此外每生产 1 百件这样的产品,仍需增加投入 0.25 万元,经市场调查知这种产品年需求量为 5 百件,产品销售数量为t 百件 时,销售所得的收入为 5t 12t 2 万元1 该公司这种产品的年生产量为 x 的函数 f x ,求 f x ;x 百件,生产并销售这种产品得到的利润为当年产量2 当该公司的年产量为多大时当年所获得的利润最大解: 1 当 x5 时, f x5x1 2x2 20.25 x0.5 x 219 4x1 2;当 x>5 时, f x 5× 51 2× 520.25 x 0.5 121 4x;所以 f x 2x 219 4x1 2,0<x5,2345 32,121 4x,x>5.2 2 当 0<x5 时, f x x 219 4x1 21 2x194故当 x19 4百件 475 件时, f x max345 32 万元 ;当 x>5 时, f x 121 4x<125 3454< 32 . 故当该公司的年产量为475 件时,当年获得的利润最大名师归纳总结 - - - - - - -第 4 页,共 5 页精选学习资料 - - - - - - - - - 精品资料欢迎下载30 人或 30 人以下, 飞机11国庆期间, 某旅行社组团去风景区旅行,如旅行团人数在票价格为 900 元;如旅行团人数多于 30 人,就赐予优惠:每多 1 人,飞机票价格就削减 10元,直到达到规定人数 75 人为止旅行团乘飞机,旅行社需付给航空公司包机费 15 000元1 写出飞机票的价格关于人数的函数;2 旅行团人数为多少时,旅行社可获得最大利润?解: 1 设旅行团人数为 x,飞机票价格为 y 元,900,0x30,就 y900x, 30x75,900,0x30,即 y1 200 10x,30x75.2 设旅行社获利 S 元,900x15 000 ,0x30,就 Sx10x15 000 , 30x75.900x15 000 ,0x30,即 Sx221 000 ,30x75.由于 S900x15 000 在区间 0,30 上单调递增,当x30 时, S 取最大值 12 000 ,又由于 S 10 x 60221 000 在区间 30,75上,当 x60 时, S取最大值 21 000. 故当 x60 时,旅行社可获得最大利润名师归纳总结 - - - - - - -第 5 页,共 5 页