欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    平面向量总复习ppt课件.ppt

    • 资源ID:28412135       资源大小:443.50KB        全文页数:30页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面向量总复习ppt课件.ppt

    有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 平面向量平面向量 复复 习习有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。知识网络知识网络单位向量及零向量平行向量和共线向量平行与垂直的条件向量向量有关概念向量的运算基本应用向量的定义相等向量及相反向量向量的加法向量的减法实数和向量的积向量的数量积求长度求角度有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。一、向量的概念一、向量的概念1、向量:既有向量:既有 ,又有,又有 的量的量 叫做向量。叫做向量。 大小大小方向方向二、向量的表示二、向量的表示 1、代数字母表示:aAB 或 2、几何有向表示:(有向线段、作图) 3、坐标表示:(综合运算)axiy j),(yx),(yxOA xyaiO(x,y)jAaxy(可运算)向量的两要素:向量的两要素:大小大小方向方向和(与位置无关,没有大小)(与位置无关,没有大小)|aAB 或有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。三、几个特点向量三、几个特点向量3、相等、相等向量:向量: 的向量叫相等向量。的向量叫相等向量。 长度为长度为10任意的任意的平行平行2、单位、单位向量:向量: 的向量叫单位向量。记作的向量叫单位向量。记作 。 1、零向量:零向量: 的向量叫零向量。记作的向量叫零向量。记作 , 零向量的方向是零向量的方向是 ,零向量与任意向量,零向量与任意向量 。 4、相反、相反向量:向量: 的向量叫相反向量。的向量叫相反向量。 5、平行、平行向量:向量: 的向量叫平行向量。的向量叫平行向量。 注意:共线向量也称平行向量注意:共线向量也称平行向量长度为零长度为零长度相等,方向相反长度相等,方向相反长度相等,方向相同长度相等,方向相同表示向量的一些有向线段,平行或在一直线上表示向量的一些有向线段,平行或在一直线上|aa6、请说出以上向量的相互关系?、请说出以上向量的相互关系?有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。三、向量的运算三、向量的运算(一)向量的加法(一)向量的加法ABC三角形法则:ABCD平行四边形法则:ab2、坐标运算:、坐标运算:),(,),(设2211yxbyxa b ba a则),(2121yyxx1、作图、作图(二)向量的减法(二)向量的减法ABADDB 2、坐标运算:),(,),(设2211yxbyxa b ba a则),(2121yyxx1、作图、作图 平行四边形法则:abab+ab+ABBCAC 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 ()aRa(1)长度:)长度:(2)方向:)方向: 时,当0aa与 异向,时当0aa与 同向时,当00aa(三)数乘向量(三)数乘向量a bab()aaa ()aa 、数乘向量的运算律:3:、数乘向量的坐标运算2的大小和方向:、 a1axyxy( , )(,)4、平面向量基本定理、平面向量基本定理12121 122eeaaee 如果, 是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 ,使有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1、平面向量数量积的定义:bacos|ba 2、数量积的几何意义:|cos.aabab等于 的长度与 在方向上的投影的乘积OABB1(四四) 数量积数量积abba)( 1)()()(bababa2cbcacba )(34、运算律:2121yyxxba3、数量积的坐标运算有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。ea=ae=|a|cosab ab=0a,b同向同向ab=|a|b|反向时反向时ab=-|a|b| a2=aa=|a|2(aa= )cos=|ab|a|b| |baba2a平面向量的数量积平面向量的数量积ab的性质的性质:有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。四、向量垂直的判定四、向量垂直的判定01baba)(022121yyxxba)(五、向量平行的判定五、向量平行的判定(共线向量的判定共线向量的判定))()(0/1aabba122111222/0bax yx yaxybxy( ),其中( , ), ( , ) |32211AByxByxA),则,(),()若(|a 22xy221221)()(yyxx2axy( )设( , ),则六、向量的长度六、向量的长度21|a aa (),2|aa七、向量的夹角七、向量的夹角cos|a ba b 向量表示向量表示坐标表示坐标表示向量表示向量表示坐标表示坐标表示222221212121yxyxyyxx有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。特别注意:特别注意:00cos0为锐角或ba为钝角或0cos0ba 由此,当需要判断或证明两向量夹角为锐角或钝角时,应排除夹角为0或 的情况,也就是要进一步说明两向量不共线。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例1 e1、e2不共线,不共线,a=e1+e2 b=3e13e2 a与与b是否共线。是否共线。典型例题分析典型例题分析: :解:假设解:假设,a与与b共线则共线则 e1+e2=(3e1-3e2)=3e1-3e2 1=3 1=-3 这样这样不存在。不存在。 a与与b不共线。不共线。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例2 设设a,b是两个不共线向量。是两个不共线向量。AB=2a+kb BC=a+b CD=a-2bA、B、D共线则共线则k=_(kR)解:解:BD=BC+CD=a+b+a-2b=2a-b 2a+kb=(2a-b)=2a-b 2=2 =-1 k=- k=-1 k=-1有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例3、 已知已知a=(3,-2) b=(-2,1) c=(7,-4),用用a、b表示表示c。解:解:c = m a+n b (7,-4)=m(3,-2)+n(-2,1) 3m-2n=7 m=1 -2m+n=-4 n=-2 c = a-2b有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例4、 |a|=10 b=(3,-4)且且ab求求a解:设解:设a =(x,y) 则则 x2+y2=100 -4x-3y=0 x=6 x=-6 y=-8 y=8 a=(6,-8)或(-6,8)有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。例例5、 设设|a|=|b|=1 |3a-2b|=3则则|3a+b|=_解:解:法法1 a=(x1y1) b=(x2,y2) x12+y12=1 x22+y22=1 3a-2b=3(x1,y1)-2(x2,y2)=(3x1-2x2,3y1-2y2)9(x12+y12)+4(x12+y12)-12(x1x2+y1y2)=9 x1x2+y1y2= 3a+b=3(x1,y1)+(x2,y2)=(3x1+x2,3y1+y2) |3a+b|2=(3x1+x2)2+(3y1+y2)2 =9(x12+y12)+(x22+y22)+6(x1x2+y1y2)=12(3a+b)=2331有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。法法2 9=9a2+4b2-12ab ab= 又又,(3a+b)2=9a2+b2+6ab=12 |3a+b|=2313有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。212121,60 ?2,32?.oe eaeebeeab 例6、设为两个单位向量?且夹角为若求 与 的夹角解:解: 22222121211222244aeeeeee ee 222112144cos604 14 1 1172eeee 7a同理可得同理可得 7b22121211227232622a beeeeee ee 712cos277a bab =120有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。7123 21323abkkababkabab 例 、已知(, ), (, ),当为何值时,()与垂直?( )与平行?平行时它们是同向还是反向?(1)k=19(2) , 反向31k有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。8. 0,(cos ,sin ),aabcabc例若向量则 与 一定满足( )以上都不对以上都不对 D. )()( C.0 B. A.cbcbcbab 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。8. 0,(cos ,sin ),aabcabc例若向量则 与 一定满足( ).()(0)(1sincos, 12222cbcbcbcbcbcb 解解 答案答案 C有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 9. , _.ABCOA OBOB OCOC OAOABC 例已知在中则 是的心 解解 ()0, 0,.OA OBOB OCOBOAOCOB CAOBCAOCAB OABCOABC 由得:即同理故 是的垂心有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。考点归纳考点归纳 1、向量的概念、向量的概念 2、实数与向量的积、实数与向量的积 3、平面向量的坐标运算、平面向量的坐标运算 4、线段的定比分点、线段的定比分点 5、平面向量的数量积、平面向量的数量积有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。练习练习一、选择题:一、选择题:1、如图所示,如图所示,G为为ABC的重心,则的重心,则GA+GB-GC等于(等于( ) A. 0 B. GE C. 4GDD. 4GF2、若若a=(,2),b=(-3,5),且,且a与与b的的夹角为钝角,则夹角为钝角,则的取值范围是的取值范围是( ) A. B. C. D.3、已知已知|a|=18,|b|=1,ab=-9,则,则a和和b的夹角的夹角是(是( ) A.120。 B.150。 C.60。 D.30。310310310310ABDCGFEDAA有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。4、已知已知|a|=|b|=1,a与与b的夹角为的夹角为90。,c=2a+3b,d=ka-4b,cd,k=( ) A. -6B. 6C. 3D. -35、已知已知|a|=3,|b|=4,(a+b)(a+3b)=33,则则a与与b的夹角为(的夹角为( ) A. 30。 B. 60。 C. 120。 D. 150。6.若若|a-b|= ,|a|=4,|b|=5,则则ab=( ) A.10 B.-10 C.10 D.1033232041BCA有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。二、解答题:二、解答题:7、已知已知e1与与e2是夹角为是夹角为60。的单位向的单位向量,且量,且a=2e1+e2,b=-3e1+2e2,求求ab及及a与与b的夹角的夹角。解解:e1,e2是单位向量,且夹角为是单位向量,且夹角为60。 e1.e2=|e1|e2|cos60。= ab=(2e1+e2)(-3e1+2e2) =-6|e12|+e1e2+2e22=-3而而|a|2=a2=(2e1+e2)2=4e12+4e1e2+e22=7|b|2=b2=(-3e1+2e2)2=9e12-2e1e2+4e22=7|a|= |b|= cos= =120。21217721|baba有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 8、(、(1)已知已知a,b都是非零向量,且都是非零向量,且a+3b与与7a-5b垂直垂直,a-4b与与7a-2b垂直,垂直,求求a与与b的夹角;的夹角;(2)已知已知|a|= ,|b|= ,且且a与与b的夹角为的夹角为 ,试求,试求a+2b与与a-b的夹角的夹角的大小。的大小。解解:(:(1)(a+3b)(7a-5b)=0 (a-4b)(7a-2b)=0 7a+16ab-15b=0 7a2-30ab+8b2=0 a2=b2 2ab=b2 cos= =60。32621|baba有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。(2)a2=3 b2=4 |a|b|=2 ab=|a|b|cos= cos30。=333)arccos(cos12)(|3144)2(|2|3131231312|2|)(2(222222QQbabababababababababababa有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 9、已知已知ABC中,中,A(2,4),B(-1,-2),C(4,3),BC边上的高为边上的高为AD。(1)求证:)求证:ABAC;(2)求点)求点D和向量和向量AD的坐标;的坐标;(3)求证:)求证:AD2=BDDC解:(解:(1)A(2,4) B(-1,-2) C(4,3) AB=(-3,-6) AC=(2,-1) ABAC=(-3)2+(-6)(-1)=0 ABAC有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。(2)D(x,y) AD=(x-2,y-4) BC=(5,5) BD=(x+1,y+2) ADBC ADBC=0 5(x-2)+5(y-4)=0 又又B、D、C共线共线 5(x+1)-5(y+2)=0 x+y-6=0 x= D( , ) x-y-1=0 y= AD=( ,- )272527252323有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。(3)AD=( ,- ) BD=( , ) DC=( , ) |AD|2= + = BDDC= + = AD2=BDDC212949232329214929494929

    注意事项

    本文(平面向量总复习ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开