欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    遗传算法详解ppt课件.ppt

    • 资源ID:28417138       资源大小:447KB        全文页数:50页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    遗传算法详解ppt课件.ppt

    有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.遗传算法遗传算法 遗传算法(遗传算法(genetic algorithms,简称简称GA)是人工智能是人工智能的重要分支,是基于达尔文进化论,在微型计算机上模拟的重要分支,是基于达尔文进化论,在微型计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存、生命进化机制而发展起来的一门新学科。它根据适者生存、优胜劣汰等自然进化规则来进行搜索计算和问题求解。对优胜劣汰等自然进化规则来进行搜索计算和问题求解。对许多用传统数学难以解决或明显失效的非常复杂问题,特许多用传统数学难以解决或明显失效的非常复杂问题,特别是最优化问题,别是最优化问题,GA提供了一个行之有效的新途径。近提供了一个行之有效的新途径。近年来,由于遗传算法求解复杂优化问题的巨大潜力及其在年来,由于遗传算法求解复杂优化问题的巨大潜力及其在工业控制工程领域的成功应用,这种算法受到了广泛的关工业控制工程领域的成功应用,这种算法受到了广泛的关注。注。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.1.1 基本遗传学基础 遗传算法是根据生物进化的模型提出的一种优化算法。遗传算法是根据生物进化的模型提出的一种优化算法。自然选择学说是进化论的中心内容,根据进化论,生物的自然选择学说是进化论的中心内容,根据进化论,生物的发展进化主要有三个原因,即遗传、变异和选择。发展进化主要有三个原因,即遗传、变异和选择。 遗传是指子代总是和亲代相似。遗传性是一切生物所遗传是指子代总是和亲代相似。遗传性是一切生物所共有的特性,它使得生物能够把其特性、性状传给后代。共有的特性,它使得生物能够把其特性、性状传给后代。遗传是生物进化的基础。遗传是生物进化的基础。 变异是指子代和亲代有某些不相似的现象,即子代永变异是指子代和亲代有某些不相似的现象,即子代永远不会和亲代完全一样。它是一切生物所具有的共有特性,远不会和亲代完全一样。它是一切生物所具有的共有特性,是生物个体之间相互区别的基础。引起变异的原因主要是是生物个体之间相互区别的基础。引起变异的原因主要是生活环境的影响及杂交等。生物的变异性为生物的进化和生活环境的影响及杂交等。生物的变异性为生物的进化和发展创造了条件。发展创造了条件。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 选择决定生物进化的方向。在进化过程中,有的要保选择决定生物进化的方向。在进化过程中,有的要保留,有的要被淘汰。自然选择是指生物在自然界的生存环留,有的要被淘汰。自然选择是指生物在自然界的生存环境中适者生存,不适者被淘汰的过程。通过不断的自然选境中适者生存,不适者被淘汰的过程。通过不断的自然选择,有利于生存的变异就会遗传下去,积累起来,使变异择,有利于生存的变异就会遗传下去,积累起来,使变异越来越大,逐步产生了新的物种。越来越大,逐步产生了新的物种。 生物就是在遗传、变异和选择三种因素的综合作用过生物就是在遗传、变异和选择三种因素的综合作用过程中,不断地向前发展和进化。选择是通过遗传和变异起程中,不断地向前发展和进化。选择是通过遗传和变异起作用的,变异为选择提供资料,遗传巩固与积累选择的资作用的,变异为选择提供资料,遗传巩固与积累选择的资料,而选择则能控制变异与遗传的方向,使变异和遗传向料,而选择则能控制变异与遗传的方向,使变异和遗传向着适应环境的方向发展。遗传算法正是吸取了自然生物系着适应环境的方向发展。遗传算法正是吸取了自然生物系统统“适者生存、优胜劣汰适者生存、优胜劣汰”的进化原理,从而使它能够提的进化原理,从而使它能够提供一个在复杂空间中随机搜索的方法,为解决许多传统的供一个在复杂空间中随机搜索的方法,为解决许多传统的优化方法难以解决的优化问题提供了新的途径。优化方法难以解决的优化问题提供了新的途径。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.1.2 遗传算法的原理和特点 遗传算法将生物进化原理引入待优化参数形成的编码遗传算法将生物进化原理引入待优化参数形成的编码串群体中,按着一定的适值函数及一系列遗传操作对各个串群体中,按着一定的适值函数及一系列遗传操作对各个体进行筛选,从而使适值高的个体被保留下来,组成新的体进行筛选,从而使适值高的个体被保留下来,组成新的群体,新群体包含上一代的大量信息,并且引入了新的优群体,新群体包含上一代的大量信息,并且引入了新的优于上一代的个体。这样周而复始,群体中各个体适值不断于上一代的个体。这样周而复始,群体中各个体适值不断提高,直至满足一定的极限条件。此时,群体中适值最高提高,直至满足一定的极限条件。此时,群体中适值最高的个体即为待优化参数的最优解。正是由于遗传算法独具的个体即为待优化参数的最优解。正是由于遗传算法独具特色的工作原理,使它能够在复杂空间进行全局优化搜索;特色的工作原理,使它能够在复杂空间进行全局优化搜索;另外,遗传算法对于搜索空间,基本上不需要什么限制性另外,遗传算法对于搜索空间,基本上不需要什么限制性的假设(如连续、可微及单峰等)。的假设(如连续、可微及单峰等)。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。遗传算法的特点遗传算法的特点同常规优化算法相比,遗传算法有以下特点:同常规优化算法相比,遗传算法有以下特点: 遗传算法是对参数的编码进行操作,而非对参遗传算法是对参数的编码进行操作,而非对参数本身。数本身。 遗传算法是从许多点开始并行操作,并非局限遗传算法是从许多点开始并行操作,并非局限于一点,从而可有效防止搜索过程收敛于局部最于一点,从而可有效防止搜索过程收敛于局部最优解。优解。 遗传算法通过目标函数计算适值,并不需要其遗传算法通过目标函数计算适值,并不需要其它推导和附加信息,因而对问题的依赖性较小。它推导和附加信息,因而对问题的依赖性较小。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 遗传算法的寻优规则是由概率决定的,而非确遗传算法的寻优规则是由概率决定的,而非确定性的。定性的。 遗传算法在解空间进行高效启发式搜索,而非遗传算法在解空间进行高效启发式搜索,而非盲目地穷举或完全随机搜索。盲目地穷举或完全随机搜索。 遗传算法对所求解的优化问题没有太多的数学遗传算法对所求解的优化问题没有太多的数学要求。要求。 遗传算法具有并行计算的特点,因而可通过大遗传算法具有并行计算的特点,因而可通过大规模并行计算来提高计算速度。规模并行计算来提高计算速度。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.1.3 遗传算法的基本操作一般的遗传算法都包含三个基本操作:复制一般的遗传算法都包含三个基本操作:复制(reproduction)、交叉交叉(crossover)和变异和变异(mutation)。 1. 复制复制 复制(又称繁殖),是从一个旧种群(复制(又称繁殖),是从一个旧种群(old population)中选择生命力强的字符串(中选择生命力强的字符串(individual string)产生新种群产生新种群的过程。或者说,复制是个体位串根据其目标函数的过程。或者说,复制是个体位串根据其目标函数f(即即适值函数)拷贝自己的过程。直观地讲,可以把目标函数适值函数)拷贝自己的过程。直观地讲,可以把目标函数f看作是期望的最大效益的某种量度。根据位串的适值所看作是期望的最大效益的某种量度。根据位串的适值所进行的拷贝,意味着具有较高适值的位串更有可能在下一进行的拷贝,意味着具有较高适值的位串更有可能在下一代中产生一个或多个子孙。显然,在复制操作过程中,目代中产生一个或多个子孙。显然,在复制操作过程中,目标函数标函数(适值适值)是该位串被复制或被淘汰的决定因素。是该位串被复制或被淘汰的决定因素。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 复制操作的初始种群复制操作的初始种群(旧种群旧种群)的生成往往是随机产生的。的生成往往是随机产生的。例如,通过掷硬币例如,通过掷硬币20次产生维数次产生维数n4的初始种群如下的初始种群如下(正正面面=1,背面,背面=0): 01101110000100010011 显然,该初始种群可以看成是一个长度为五位的无符显然,该初始种群可以看成是一个长度为五位的无符号二进制数,将其编成四个位串,并解码为十进制的数:号二进制数,将其编成四个位串,并解码为十进制的数: 位串位串1 1: 01101 13 位串位串2 2: 11000 24 位串位串3 3: 01000 8 位串位串4 4: 10011 19 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 通过一个通过一个5位无符号二进制数,可以得到一个从位无符号二进制数,可以得到一个从0到到31的数值的数值x,它可以是系统的某个参数。计算目标它可以是系统的某个参数。计算目标函数或适值函数或适值f(x)=x2,其结果如表其结果如表6-1所示。计算种群所示。计算种群中所有个体位串的适值之和,同时,计算种群全体中所有个体位串的适值之和,同时,计算种群全体的适值比例,其结果示于表中。的适值比例,其结果示于表中。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。转轮法转轮法转轮法把种群中所有个体位串适值的总和看作一个轮子的圆转轮法把种群中所有个体位串适值的总和看作一个轮子的圆周,而每个个体位串按其适值在总和中所占的比例占据轮子周,而每个个体位串按其适值在总和中所占的比例占据轮子的一个扇区。按表的一个扇区。按表6-1可绘制如图的转轮。可绘制如图的转轮。复制时,只要简单地转动这个按权重复制时,只要简单地转动这个按权重划分的转轮划分的转轮4次,从而产生次,从而产生4个下一代个下一代的种群。例如对于表的种群。例如对于表6-1中的位串中的位串1,其适值为其适值为169,为总适值的,为总适值的14.4%。因此,每旋转一次转轮指向该位串因此,每旋转一次转轮指向该位串的概率为的概率为0.144。每当需要下一个后。每当需要下一个后代时,就旋转一下这个按权重划分代时,就旋转一下这个按权重划分的转轮,产生一个复制的候选者。的转轮,产生一个复制的候选者。这样位串的适值越高,在其下代中这样位串的适值越高,在其下代中产生的后代就越多。产生的后代就越多。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 当一个位串被选中时,此位串将被完整地复当一个位串被选中时,此位串将被完整地复制,然后将复制位串送入匹配集(缓冲区)中。制,然后将复制位串送入匹配集(缓冲区)中。旋转旋转4次转轮即产生次转轮即产生4个位串。这个位串。这4个位串是上代种个位串是上代种群的复制,有的位串可能被复制一次或多次,有群的复制,有的位串可能被复制一次或多次,有的可能被淘汰。在本例中,位串的可能被淘汰。在本例中,位串3被淘汰,位串被淘汰,位串4被复制一次。如表被复制一次。如表6-2所示,适值最好的有较多的所示,适值最好的有较多的拷贝,即给予适合于生存环境的优良个体更多繁拷贝,即给予适合于生存环境的优良个体更多繁殖后代的机会,从而使优良特性得以遗传,反之,殖后代的机会,从而使优良特性得以遗传,反之,最差的则被淘汰。最差的则被淘汰。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。2. 交叉 简单的交叉分两步实现。第一步是将新复制产生的位串简单的交叉分两步实现。第一步是将新复制产生的位串个体随机两两配对;第二步是随机选择交叉点,对匹配的位个体随机两两配对;第二步是随机选择交叉点,对匹配的位串进行交叉繁殖,产生一对新的位串。具体过程如下:设位串进行交叉繁殖,产生一对新的位串。具体过程如下:设位串的字符长度为串的字符长度为l,在在1,l1的范围内,随机地选取一个整的范围内,随机地选取一个整数值数值k作为交叉点。将两个配对串从第作为交叉点。将两个配对串从第k位右边部分的所有字位右边部分的所有字符进行交换,从而生成两个新的位串。例如,在表符进行交换,从而生成两个新的位串。例如,在表6-2中,已中,已知位串的字符长度知位串的字符长度l=5,随机选取随机选取k=4,对两个初始的位串个对两个初始的位串个体体A1和和A2进行配对,交叉操作的位置用分隔符进行配对,交叉操作的位置用分隔符“|”表示为:表示为:A1=0110 | 1A2=1100 | 0交叉操作后产生了两个新的字符串为:交叉操作后产生了两个新的字符串为: A1=01100 A2=11001 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 一般的交叉操作过程:一般的交叉操作过程: 遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。 表表6-36-3列出了交叉操作之后的结果数据,从中可以看出交叉操作列出了交叉操作之后的结果数据,从中可以看出交叉操作的具体过程。首先,随机配对匹配集中的个体,将位串的具体过程。首先,随机配对匹配集中的个体,将位串1 1、2 2配对,位配对,位串串3 3、4 4配对;然后,随机选取交叉点,设位串配对;然后,随机选取交叉点,设位串1 1、2 2的交叉点为的交叉点为k k=4=4,二者只交换最后一位,从而生成两个新的位串,即二者只交换最后一位,从而生成两个新的位串,即 211001100110010011011021新串新串:串:串有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。位串位串3、4的交叉点为的交叉点为k=2,二者交换后三位,生成两个新二者交换后三位,生成两个新的位串,即的位串,即 430000111011110000011143新串新串:串:串有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。单点交叉与多点交叉单点交叉与多点交叉 上述例子中交叉的位置是一个,称单点交叉。即指个上述例子中交叉的位置是一个,称单点交叉。即指个体切断点有一处,由于进行个体间的组合替换生成两个新体切断点有一处,由于进行个体间的组合替换生成两个新个体,位串个体长度为个体,位串个体长度为l时,单点交叉可能有时,单点交叉可能有l1个不同的个不同的交叉。交叉。 多点交叉是允许个体的切断点有多个,每个切断点在多点交叉是允许个体的切断点有多个,每个切断点在两个个体间进行个体的交叉,生成两个新个体。两个个体间进行个体的交叉,生成两个新个体。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。3. 变异变异 尽管复制和交叉操作很重要,在遗传算法中是第一位的,但不能保证尽管复制和交叉操作很重要,在遗传算法中是第一位的,但不能保证不会遗漏一些重要的遗传信息。在人工遗传系统中,变异用来防止这不会遗漏一些重要的遗传信息。在人工遗传系统中,变异用来防止这种遗漏。在简单遗传算法中,变异就是在某个字符串当中把某一位的种遗漏。在简单遗传算法中,变异就是在某个字符串当中把某一位的值偶然的(概率很小的)随机的改变,即在某些特定位置上简单地把值偶然的(概率很小的)随机的改变,即在某些特定位置上简单地把1变为变为0,或反之。当它有节制地和交叉一起使用时,它就是一种防止,或反之。当它有节制地和交叉一起使用时,它就是一种防止过度成熟而丢失重要过度成熟而丢失重要概念的保险策略。例如,随概念的保险策略。例如,随机产生一个种群,如表所示。在机产生一个种群,如表所示。在该表所列种群中,无论怎样交叉,该表所列种群中,无论怎样交叉,在第在第4位上都不可能得到有位上都不可能得到有1的位串。的位串。若优化的结果要求该位是若优化的结果要求该位是1,显然仅靠交叉是不够的,还需要有变显然仅靠交叉是不够的,还需要有变异,即特定位置上的异,即特定位置上的0和和1之间的转变。之间的转变。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 变异在遗传算法中的作用是第二位的,但却是必不可变异在遗传算法中的作用是第二位的,但却是必不可少的。变异运算用来模拟生物在自然界的遗传环境中由于少的。变异运算用来模拟生物在自然界的遗传环境中由于各种偶然因素引起的基因突变,它以很小的概率随机改变各种偶然因素引起的基因突变,它以很小的概率随机改变遗传基因(即位串个体中某一位)的值。通过变异操作,遗传基因(即位串个体中某一位)的值。通过变异操作,可确保种群中遗传基因类型的多样性,以使搜索能在尽可可确保种群中遗传基因类型的多样性,以使搜索能在尽可能大的空间中进行,避免丢失在搜索中有用的遗传信息而能大的空间中进行,避免丢失在搜索中有用的遗传信息而陷入局部解。根据统计,变异的概率为陷入局部解。根据统计,变异的概率为0.001,即变异的频,即变异的频率为每千位传送中只变异一位。在表率为每千位传送中只变异一位。在表6-3的种群中共有的种群中共有20个字符(每位串的长度为个字符(每位串的长度为5个字符)。期望变异的字符串个字符)。期望变异的字符串位数为位数为200.001=0.02(位),所以在此例中无位值的改(位),所以在此例中无位值的改变。从表变。从表6-2和表和表6-3可以看出,虽然仅进行一代遗传操作,可以看出,虽然仅进行一代遗传操作,但种群适值的平均值和最大值却比初始种群有了很大的提但种群适值的平均值和最大值却比初始种群有了很大的提高,平均适值由高,平均适值由293变到变到439,最大值由,最大值由576变到变到729。这说。这说明随着遗传运算的进行,种群正向着优化的方向发展。明随着遗传运算的进行,种群正向着优化的方向发展。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。遗传算法在以下几个方面不同于传统优化遗传算法在以下几个方面不同于传统优化方法方法 遗传算法只对参数集的编码进行操作,而不是遗传算法只对参数集的编码进行操作,而不是参数集本身。参数集本身。 遗传算法的搜索始于解的一个种群,而不是单遗传算法的搜索始于解的一个种群,而不是单个解,因而可以有效地防止搜索过程收敛于局部个解,因而可以有效地防止搜索过程收敛于局部最优解。最优解。 遗传算法只使用适值函数,而不使用导数和其遗传算法只使用适值函数,而不使用导数和其它附属信息,从而对问题的依赖性小。它附属信息,从而对问题的依赖性小。 遗传算法采用概率的、而不是确定的状态转移遗传算法采用概率的、而不是确定的状态转移规则,即具有随机操作算子。规则,即具有随机操作算子。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 遗传算法的工作原理示意图遗传算法的工作原理示意图有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.2.1 目标函数值到适值形式的映射 适值是非负的,任何情况下总希望越大越好;而目标适值是非负的,任何情况下总希望越大越好;而目标函数有正、有负、甚至可能是复数值;且目标函数和适值函数有正、有负、甚至可能是复数值;且目标函数和适值间的关系也多种多样。如求最大值对应点时,目标函数和间的关系也多种多样。如求最大值对应点时,目标函数和适值变化方向相同;求最小值对应点时,变化方向恰好相适值变化方向相同;求最小值对应点时,变化方向恰好相反;目标函数值越小的点,适值越大。因此,存在目标函反;目标函数值越小的点,适值越大。因此,存在目标函数值向适值映射的问题。数值向适值映射的问题。 1.2 遗传算法应用中的一些基本问题 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 首先应保证映射后的适值是非负的,其次目标函首先应保证映射后的适值是非负的,其次目标函数的优化方向应对应于适值增大的方向。数的优化方向应对应于适值增大的方向。 对最小化问题,一般采用如下适值函数对最小化问题,一般采用如下适值函数f(x)和目标和目标函数函数g(x)的映射关系:的映射关系: (1-6)其中:其中:cmax可以是一个输入参数,或是理论上的最可以是一个输入参数,或是理论上的最大值,或是到目前所有代(或最近的大值,或是到目前所有代(或最近的k代)之中见代)之中见到的到的g(x)的最大值,此时的最大值,此时cmax随着代数会有所变化。随着代数会有所变化。其它, 0)(),()(maxmaxcxgxgcxf有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。对最大化问题,一般采用下述方法:对最大化问题,一般采用下述方法: (1-7)式中式中: cmin既可以是输入值也可以是当前最小值或既可以是输入值也可以是当前最小值或最近的最近的k代中的最小值。代中的最小值。对指数函数问题,一般采用下述方法:对指数函数问题,一般采用下述方法:其中:其中:c一般取一般取1.618或或2(最大化),(最大化),0.618(最小(最小化)。这样,既保证了化)。这样,既保证了f(x)0又使又使f(x)的增大方向的增大方向与优化方向一致。与优化方向一致。其它, 0)(,)()(minmincxgcxgxfycxf)()(xgy 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.2.2 适值的调整 为了使遗传算法有效地工作,必须保持种群内位串的多样性和位为了使遗传算法有效地工作,必须保持种群内位串的多样性和位串之间的竞争机制。现将遗传算法的运行分为开始、中间和结束三个串之间的竞争机制。现将遗传算法的运行分为开始、中间和结束三个阶段来考虑:在开始阶段,若一个规模不太大的种群内有少数非凡的阶段来考虑:在开始阶段,若一个规模不太大的种群内有少数非凡的个体(适值很高的位串),按通常的选择方法(选择复制的概率为个体(适值很高的位串),按通常的选择方法(选择复制的概率为fi/fi,期望的复制数为期望的复制数为fi/),),这些个体会被大量地复制,在种群中占这些个体会被大量地复制,在种群中占有大的比重,这样就会减少种群的多样性,导致过早收敛,从而可能有大的比重,这样就会减少种群的多样性,导致过早收敛,从而可能丢失一些有意义的搜索点或最优点,而进入局部最优;在结束阶段,丢失一些有意义的搜索点或最优点,而进入局部最优;在结束阶段,即使种群内保持了很大的多样性,但若所有或大多数个体都有很高的即使种群内保持了很大的多样性,但若所有或大多数个体都有很高的适值,从而种群平均适值和最大适值相差无几,则平均适值附近的个适值,从而种群平均适值和最大适值相差无几,则平均适值附近的个体和具有最高适值的个体,被选中的机会相同,这样选择就成了一个体和具有最高适值的个体,被选中的机会相同,这样选择就成了一个近乎随机的步骤,适值的作用就会消失,从而使搜索性能得不到明显近乎随机的步骤,适值的作用就会消失,从而使搜索性能得不到明显改进。因此,有必要对种群内各位串的适值进行有效调整,既不能相改进。因此,有必要对种群内各位串的适值进行有效调整,既不能相差太大,又要拉开档次,强化位串之间的竞争性。差太大,又要拉开档次,强化位串之间的竞争性。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.2.3 编码原则 遗传算法参数编码原则有两种:深层意义上的建筑块遗传算法参数编码原则有两种:深层意义上的建筑块原则和最小符号表原则。而后者是一种应用广泛的实用原原则和最小符号表原则。而后者是一种应用广泛的实用原则。则。 最小符号表原则要求选择一个使问题得以自然表达的最小符号表原则要求选择一个使问题得以自然表达的最小符号编码表。在前面讨论中使用的都是二进制符号编最小符号编码表。在前面讨论中使用的都是二进制符号编码表码表0, 1,任何一个长度为,任何一个长度为l的位串都包含在的位串都包含在0,1l中。根中。根据遗传算法的模式理论,遗传算法能有效工作的根本原因,据遗传算法的模式理论,遗传算法能有效工作的根本原因,在于其能有效的处理种群中的大量模式,尤其是那些定义在于其能有效的处理种群中的大量模式,尤其是那些定义长度短、确定位数少、适值高的模式(即建筑块)。因此,长度短、确定位数少、适值高的模式(即建筑块)。因此,编码应使确定规模的种群中包含尽可能多的模式。编码应使确定规模的种群中包含尽可能多的模式。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。表表6-5给出了一个参数的二进制给出了一个参数的二进制编码和非二进制编码的对比情编码和非二进制编码的对比情况,即将况,即将0,31上的二进制整数上的二进制整数一一对应地映射到一个有一一对应地映射到一个有32个字个字母的符号表中,这个符号表包母的符号表中,这个符号表包含含26个英文字母(个英文字母(AZ)和和6个个数字(数字(16)。在二进制编码中,)。在二进制编码中,通过编码表中小部分关键编码通过编码表中小部分关键编码可以找到重要的相似性而在非可以找到重要的相似性而在非二进制编码中,只能看到单一二进制编码中,只能看到单一编码的符号表,看不出编码中编码的符号表,看不出编码中的相似性。的相似性。为了进一步了解二进制编码的为了进一步了解二进制编码的数学意义,假设有一个非二进数学意义,假设有一个非二进制的包含制的包含k个字母编码的符号表个字母编码的符号表V及二进制编码的符号表及二进制编码的符号表V,即即V=a1,a2,akV=0,1有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.3.1 复制方法的改进1稳态复制法稳态复制法 该方法保证种群中最优秀的个体在进化过程该方法保证种群中最优秀的个体在进化过程中不被删除,这在很大程度上减少了有效基因的中不被删除,这在很大程度上减少了有效基因的丢失。在经过交叉、变异产生的新种群中,只有丢失。在经过交叉、变异产生的新种群中,只有一个或两个优秀个体被选进下一代种群,替代原一个或两个优秀个体被选进下一代种群,替代原有种群中的最差个体。有种群中的最差个体。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。2选择种子法选择种子法 该法也称最优串复制法,它保证了最优的个该法也称最优串复制法,它保证了最优的个体被选进下一代进化种群。其执行过程如下:体被选进下一代进化种群。其执行过程如下: 随机初始化种群随机初始化种群N(0),种群大小为种群大小为n。 计算种群中所有个体适值。计算种群中所有个体适值。 对以后的种群对以后的种群N(t)进行如下操作,直至满足条进行如下操作,直至满足条件或达到进化代数。根据个体适值大小随机选出件或达到进化代数。根据个体适值大小随机选出n个个体组成种群个个体组成种群N0(t),并复制一份为并复制一份为N1(t),对种对种群群N0(t)实施交叉操作,对种群实施交叉操作,对种群N1(t)实施基因突变,实施基因突变,用以防止有效基因丢失。用以防止有效基因丢失。 计算种群计算种群N0(t)、N1(t)和和N(t)的个体适值,从中的个体适值,从中选出最好的选出最好的n个个体构成下一代种群个个体构成下一代种群N (t1),转转至。至。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。3确定性复制法确定性复制法 在确定性复制法中,复制的概率按常规计算为:在确定性复制法中,复制的概率按常规计算为:Pifi/fi。对个体对个体Ai,其期望的后代数目其期望的后代数目ei,计算为:计算为:einPi。每一位串个体按每一位串个体按ei的整数部分分配后代数,种群的其余部的整数部分分配后代数,种群的其余部分按顺序表由高到低来填充。分按顺序表由高到低来填充。 4置换式余数随机复制法置换式余数随机复制法 这方法开始与上述确定性复制法一样,期望的个体数这方法开始与上述确定性复制法一样,期望的个体数如前分配为如前分配为ei的整数部分;但的整数部分;但ei的余数部分用来计算转轮法的余数部分用来计算转轮法中的权值,以补充种群总数。中的权值,以补充种群总数。5非置换式余数随机复制法非置换式余数随机复制法 这方法开始也与上述确定性复制法一样,而这方法开始也与上述确定性复制法一样,而ei的余数的余数部分按概率来处理。换句话说,个体至少复制一个与部分按概率来处理。换句话说,个体至少复制一个与ei整整数部分相等的后代,然后以数部分相等的后代,然后以ei的余数部分为概率来复制其的余数部分为概率来复制其余的后代,直至种群的总数达到余的后代,直至种群的总数达到n。例如一个具有期望复例如一个具有期望复制值为制值为1.5的个体,它可以复制产生一个后代,并以的个体,它可以复制产生一个后代,并以0.5概概率产生另一个后代。试验表明,这种方法优于其它复制方率产生另一个后代。试验表明,这种方法优于其它复制方法。法。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.3.2 高级GA算法 为改善为改善GA的遗传性,在复制、交叉和变异运算的基础的遗传性,在复制、交叉和变异运算的基础上,再考虑两种类型的基因运算,即为微运算和宏运算。上,再考虑两种类型的基因运算,即为微运算和宏运算。多点交叉微运算是在个体级别上的运算,重组宏运算是在多点交叉微运算是在个体级别上的运算,重组宏运算是在种群级别上的运算。种群级别上的运算。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.4 基于遗传算法的系统在线辨识 1.4.1 遗传算法在参数辨识中的应用 1.4.2 遗传算法参数辨识仿真示例 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1.4.1 遗传算法在参数辨识中的应用1离散系统参数估计离散系统参数估计 设线性离散系统的数学模型为:设线性离散系统的数学模型为: (1-18)式中:式中:d为滞后时间,为滞后时间,(k)为零均值的噪声序列(方差为为零均值的噪声序列(方差为2),),z-1为后移算子。为后移算子。 )()()()()()(111kzCdkuzBkyzAiniizazAa111)(iniizbzBb01)(iniizczCc111)(有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 假定假定A(z-1)、B(z-1)和和C(z-1)未知,则待辨识参数未知,则待辨识参数向量包含向量包含na+ nb+ nc+1个参数,即个参数,即 (1-19)真参数为:真参数为: (1-20) 要应用遗传算法对参数向量要应用遗传算法对参数向量进行在线优化的进行在线优化的参数辨识,必须解决两个问题,一个是确定多参参数辨识,必须解决两个问题,一个是确定多参数编码映射方法,另一个是如何根据目标函数确数编码映射方法,另一个是如何根据目标函数确定适值。定适值。 Tnnncbacccbbbaaa,211021Tnnncbacccbbbaaa,211021有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。2. 参数级联定点映射编码参数级联定点映射编码 采用多参数级联定点映射编码原则进行编码,可采用多参数级联定点映射编码原则进行编码,可根据辨识精度确定每个参数的二进制编码长度。根据辨识精度确定每个参数的二进制编码长度。假如每个参数线性映射在假如每个参数线性映射在-2l-1,+2l-1范围内,且要范围内,且要求辨识精度求辨识精度2-m,则每个参数需要则每个参数需要m+l位;若已知位;若已知时滞时滞d2n,则时滞可用则时滞可用n位编码,则各参数编码组位编码,则各参数编码组成一个整体位串的长为成一个整体位串的长为(na+ nb+ nc)(l+m)+n,这这个整体位串就是系统待辨识参数的一个解。个整体位串就是系统待辨识参数的一个解。 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。 设整体位串构成的种群数为设整体位串构成的种群数为N,第第p代的第代的第j个个(1jN)位串所对应的参数为:位串所对应的参数为: (1-21) 根据辨识结果,有预测输出和预测输出误差,它根据辨识结果,有预测输出和预测输出误差,它们分别满足:们分别满足: (1-22) (1-23)Tpjnpjipjnpjpjnpjpjdccbbaacba,=,0, 1111()( )() ()() ( )ppppjjjjAzykBzu kdCzk( )( )( )ppjjekyky k有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。3. 目标函数到适值形式的映射目标函数到适值形式的映射 为保证映射后的适值是非负的,选择目标函数的优化方向为保证映射后的适值是非负的,选择目标函数的优化方向应对应于适值的增大方向。由式应对应于适值的增大方向。由式(1-6)的映射关系,可选择的映射关系,可选择适值函

    注意事项

    本文(遗传算法详解ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开