2019年八年级数学上册第二章实数知识点归纳(新版)北师大版.docx
-
资源ID:2844384
资源大小:187.92KB
全文页数:5页
- 资源格式: DOCX
下载积分:1金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019年八年级数学上册第二章实数知识点归纳(新版)北师大版.docx
第二章 实数1. 无理数的引入。无理数的定义无限不循环小数。 一、实数的概念及分类 1、实数的分类 2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等根号a(a为非完全平方数或非立方数)。(2)有特定意义的数,如圆周率(=3.14159265),或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001;0.585885888588885(相邻两个5之间8的个数逐次加1等;(4)某些三角函数值,如sin60o等; 二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算. 注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .三、平方根、算数平方根和立方根 1平方根和算术平方根:(1)概念:如果,那么是的平方根,记作:;读作“正、负根号”,其中叫做的算术平方根,读作根号。(2)性质:当0时,0; 当时,无意义; ; 。(区分、)性质:正数和零的算术平方根都只有一个,零的算术平方根是零。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。(3)开平方:求一个数a的平方根的运算,叫做开平方。注意 :的双重非负性:2立方根:(1)概念:若,那么是的立方根(或三次方根),记作:; (2)性质:; ; 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:, 这说明三次根号内的负号可以移到根号外面。区分:平方根、立方根的性质根源:开平方是平方的逆运算;开立方是立方的逆运算。正数和负数的平方后为正,所以,只有非负数才可以开平方,因此一个非0正数开平方后有2个;而任何数的立方后的符号与原数的符号一致,所以,任何数都可以开立方,一个数开立方后只有1个,符号与原数的符号也一致。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。在数轴上,右边的点表示的数比左边的点表示的数大。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数, (3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法: 设 ,则 设 ,则 。 同号的有理数与无理数、同号的无理数与无理数大小比较时常用平方法。如:比较 与;与(6)倒数法:设 ,则;设 ,则 规律:同号取倒(数)反向五、算术平方根有关计算(二次根式)1、含有二次根号“”; 被开方数必须是非负数,即:。2、性质:(1)非负性(2) (中前提,被开方数)(3)(中隐含被开方数)(4);()(前提根号要有意义)(5) ;()(前提式子和根号要有意义,)拓展:三个重要非负数: .注意:非负数之和为0 它们都是0.3、运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 (4)与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。