现代检测技术大作业.doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date现代检测技术大作业现代检测技术大作业2015年2016年度第1学期课程名称: 现代检测技术 专 业: 控制工程 研究生姓名: 陈俊亚 学 号: 2016232011 任课教师姓名: 冯晓明 第一部分:现代检测技术的内容一、概述 随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测,从一般的参数量值测量到参数的状态估计,从确定性测量到模糊的判断等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。二、传感器的基本原理及检测技术的特点 利用某种转换功能,将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。由于电信号易于放大、反馈、滤波、微分、存储和远距离传输,加上计算机只能处理电信号,所以,从狭义上说,传感器又可以定义为可唯一而重视性好的将外界信号转换成电信号的元器件;从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:物理类,基于力、热、光、电、磁和声等物理效应。化学类,基于化学反应的原理。生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。检测技术的特点可以归纳为:(1)从待测参数的性质看,现代检测技术主要用于非常见的参数的测量,对于这些参数的测量目前还没有合适的传感器对应,难以实现常规意义的“一一对应”的测量;另一种情况是待测参数虽已有传感器,但测量误差比较大,受各种因素的影响比较大,不能满足测量要求。(2)从应用的领域看,现代检测技术主要用于复杂设备、复杂过程的影响性能质量等方面的综合性参数的测量,如高速运动机械的故障分析、油品质量的检测、多相流系统中的流动参数的测量等。对于这样的被测对象或测量要求,很难用单一传感器来完成。(3)从使用的技术或方法看,现代检测技术主要利用了新型的传感技术或传感器。更多的利用了软技术,即通过对传感器输出的信号进行处理得到特征量;通过建立传感器的输出与待测量之间的模型;通过应用专业知识、数据库、规则等进行推理,根据被测量的信息获取待测量。三、现代检测中传感器的应用及检测系统性能评价现代检测之中,应用到的传感器有各式各样的,各种功能应有尽有,其中最为普遍的要数光电传感器、温度传感器以及光纤传感器,下面就着重介绍下面几种种传感器及检测系统评价指标。3.1、光电传感器光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。现如今,应用最为广泛的要数发光二极管(LED)了,LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED 通电流时,它会发光。由于LED 是固态的,所以它能延长传感器的使用寿命。因而使用LED 的光电传感器能被做得更小,且比白炽灯传感器更可靠。LED 抗震动抗冲击,并且没有灯丝。另外,LED 所发出的光能只相当于同尺寸白炽灯所产生光能的一部分。 再比如将接收器的放大器调制到发射器的调制频率, 那么它就只能对以此频率振动的光信号进行放大。我们可以将光波的调制比喻成无线电波的传送和接收。将收音机调到某台,就可以忽略其他的无线电波信号。经过调制的LED 发射器就类似于无线电波发射器,其接收器就相当于收音机。3.2、温度传感器 温度是一种最基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义.测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:传统的分立式温度传感器、模拟集成温度传感器、智能集成温度传感器。目前,新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,温度是实际应用中经常需要测试的参数,温度传感器从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。3.3、光纤传感器光纤传感器OFS在应用上分为传光型的和传感型的,顾名思义,前一种就是起到传输光的作用,传感元件要与光纤连在一起;后一种就是既有传输光的作用,又有传感作用。因为光纤传感器作为传感用有很多的应用,比如抗腐蚀,抗电磁干扰等,可以在复杂恶劣的环境下使用。作为传感用的光纤,原理上就是通过对传输光的偏振,强度,相位,波长,周期,频率等进行调制,通过检测器获得调制结果而进行传感的器件。因为当外界的环境变化时,比如说温度,应力、磁、声、压力、温度、加速度等都会对光纤的折射率分布等一些构造产生微小的影响,导致传输光的特性发生改变,通过探测这些改变而得到外界的变化,起到传感作用。至于应用方面就很广泛了,几乎可以应用到现在大多数电学传感器应用的领域了,比如安防,围界安全,输油管道安全实时监控等,其应用前景非常广泛。3.4、电阻式传感器 电阻式传感器是通过转换元件将被测量转变为电阻值,通过转换电路将电阻值转化为电信号,通过测量电信号达到测量非电量的问题。结构:由电阻元件及电刷(活动触点)两个基本部分组成。电刷相对于电阻元件的运动可以是直线运动、转动和螺旋运动,因而可以将直线位移或角位移转换为与其成一定函数关系的电阻或电压输出。电阻式传感器具有结构简单、输出精度较高、线性和稳定性好等特点。但是它受环境条件如温度等影响较大,有分辨率不高等不足之处。电阻式传感器的分类:电位器式传感器是一种把机械的线位移或角位移输入量转换为和它成一定函数关系的电阻或电压输出的传感元件,成一定函数关系的电阻或电压输出的传感元件;应变片式传感器的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化;气敏和湿敏电阻传感器是一种把气体中的特定成分或水蒸气检测出来造成半导体阻值变化的电阻传感器。3.5、电感式传感器电感式传感器是利用电磁感应原理将被测量的变化转换为线圈的自感或互感变化的器件。常用来测量位移、压力、流量、比重等。优点是结构简单、灵敏度高、输出电阻小、输出功率大、抗干扰能力强,缺点是不宜快速动态测量。3.6、电容式传感器电容式传感器是一种将被测量的变化转化为电容量变化的器件。常用来测量位移、压力、加速度、液位、振动和湿度等。优点是结构简单体积小、测量精度高,可实现非接触测量,能在高温、辐射、振动等恶劣条件下工作。电容式传感器与电阻式、电感式等传感器相比有如下一些优点:(1)高阻抗、小功率,因而所需的输入力很小,输人能量也很低。电容式传感器因带电极板 间静电引力极小(约几个10-5 N),因此所需输入能量极小,所以特别适宜用来解决输入能量低的 测量问题,例如测量极低的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力非常髙,能 感受0.001m甚至更小的位移。(2)温度稳定性好。传感器的电容值一般与电极材料无关,有利于选择温度系数低的材料, 又因本身发热极小,对稳定性影响甚微。(3)结构简单,适应性强,待测体是导体或半导体均可,可在恶劣环境中工作。电容式传感 器结构简单,易于制造,可做得非常小巧,以实现某些特殊的测量;能工作在高低温、强辐射及强 磁场等恶劣的环境中,也能对带有磁性的工件进行测量。(4)动态响应好。由于极板间的静电引力很小,可动部分做得很小很薄,因此其固有频率很 高,动态响应时间短,能在几兆赫的频率下工作,特别适合动态测量,如测量振动、瞬时压力等。(5)可以实现非接触测量,具有平均效应。例如非接触测量回转轴的振动或偏心、小型滚珠 轴承的径向间隙等。当采用非接触测量时,电容式传感器具有平均效应,可以减小工作表面粗糙 等对测量的影响。3.7、检测系统性能评价检测系统的特性是指检测系统与其输入、输出的关系。根据输入信号是否随时间变化,检测系统的基本特性可分为静态特性和动态特性。(1) 静态特性在被测量的各值处于稳定状态时,输出量和输入量之间的关系。静态性能指标分为迟滞、重复性、线性度、精度、稳定性和漂移;(2) 动态特性是指在动态测1量时,输出量和随时间变化的输入量之间的关系。动态性能指标分为响应时间、响应频率和工作频率。四、信号调理电路4.1、电桥测量电桥的特点:(1)能把电阻、电容、电感等电抗参数的变化,变换成电压或电流的变化,便于信号的放大和处理。(2)能测量出微弱的阻抗变化量。(3)可以通过采用对称差动式传感器结构组成差动半桥或全桥来实现非线性误差的补偿,并提高电桥输出的灵敏度。1)直流电桥(以平衡直流电桥为例)特点:(1)响应速度慢,只适用于缓慢变化信号的检测。(2)测量精度高,其精度取决于电位器的精度。(3)输出与供桥电源电压无关,可避免由于电源电压的不稳定而带来的干扰。2)交流电桥交流电桥是测量各种交流阻抗的基本仪器,如电容的电容量,电感的电感量等。此外还可利用交流电桥平衡条件与频率的相关性来测量与电容、电感有关的其他物理量,如互感、磁性材料的磁导率、电容的介质损耗、介电常数和电源频率等,其测量准确度和灵敏度都很高,在电磁测量中应用极为广泛。4.2、信号放大电路放电电路具有如下特征:稳定而足够的放大倍数;高输入阻抗以与传感器的输出阻抗匹配;高共模抑制比以抑制共模干扰;低输入失调电压和电流、低温漂和低噪声 1、直流放大电路2、交流放大电路引入深度电压并联负反馈后,放大电路的增益为: 2、放大电路应用实例高精度压力放大电路光敏信号放大电路4.3、信号转换电路这种电路是指将电压、电流、电阻和频率等各类信号进行相互转换的电路4.4、滤波电路 滤波电路(也称滤波器)就是一种选频装置,可使信号中特定的频率成分通过,而极大的衰减其他频率成分。 滤波电路的功能是:滤除测试系统中由于各种原因引入的噪声和干扰;滤除信号调制过程中的载波等无用信号;用于分离各种不同的频率信号,提取感兴趣的频率成分;对系统的频率特性进行补偿。 1、滤波器的基本参数1)增益A0:指通带内的幅频特性的幅值2)通带截止频率fp: fp=p/2为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。3)阻带截止频率fr:fr=r/2为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。4)转折频率fc:fc=c/2为信号增益下降了3dB时的频率,常作为截止频率。5)带宽B:两截止频率之间的频率范围。即低通和高通滤波器B=fc,带通和带阻滤波器B= fc2 - fc1。6)品质因数Q:对于带通和带阻滤波器来说,Q=f0/B。越大,则滤波器的选择性越好。7)倍频程选择性:指在fc2与2 fc2之间,或在fc1与fc1/2之间,幅频特性的衰减值,用dB表示。它反映了滤波器对通频带以外的频率成分的衰减能力。 2、无源滤波器无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器分为无源RC低通滤波器、无源RC高通滤波器、无源RC带通滤波器。3、有源滤波器有源电力滤波器(Active Power Filter,简称APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿。分为二阶有源低通滤波器、二阶有源高通滤波器、二阶有源带通滤波器。4、滤波器的应用带通滤波器用于信号的频谱分析和信号中特定频率成分的提取;低通滤波器用于滤出信号中的高频干扰和噪声;高通滤波器用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的滤波器。漏磁检测霍尔传感器调理电路5、频率调制的解调调制就是用一个信号(称为调制信号)去控制另一个作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。从已经调制的信号中恢复出调制信号的过程称为解调。调频波的解调是先将调频波变换成调频调幅波,然后再进行幅值检波,由鉴频器完成 五、现代检测技术的发展趋势 近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统仪器仪表产业的改造,而且可导致建立新型工业和军事变革。微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、L1GA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。MEMS的发展,把仪表的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器和多通道检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路等封装在一起完成了数字化、智能化、网络化、系统化。多传感器数据融合技术正在形成热点,它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以至于融合,这是必然的趋势。多传感器数据融合技术也促进了 显示仪表技术的发展。多传感器数据融合的定义概括为:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确定性,获得对被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以数字压力表逐步得到推广应用。应用领域除军事外,还适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。第二部分:应用实例一、研究背景和目的1.1研究背景和目的近年来,煤矿事故频频发生,煤矿工人的安全问题时时牵拉着人们的神经。煤炭是国家经济发展的重要能源,所以安全生产、加强煤矿的安全建设已经越来越紧急和迫切。煤矿事故的元凶主要是瓦斯,因瓦斯事故每年都给国家和人民带来巨大损失。煤矿瓦斯治理是煤矿安全生产治理的核心,如何有效控制瓦斯事故是解决煤矿安全问题的关键。据不完全统计,在 1981 至 2001 年期间,全国煤矿事故总计死亡约 12.6 万人,其中重特大瓦斯事故死亡人数占 72.3%,平均每年死亡 1579 人。2005 年,煤矿瓦斯事故发生 405 起,死亡 2157 人;2006 年瓦斯事故发生 327 起,死亡 1319 人。仅 2005 年 12月 7 日河北省唐山市恒源实业有限公司的瓦斯煤尘爆炸事故就造成了 108 人死亡,29人受伤的严重后果,直接经济损失 4870.67 万元。在这些残酷的数字面前,人们清醒得认识到,若要保障人民的生命安全和国家的经济正常发展,必须加强煤矿的安全生产,加强瓦斯含量的检测力度,努力做到防患于未然,才能将损失降低到最小。由于煤矿自然环境复杂,矿井开采条件多变,而且存在着火灾、水灾等自然灾害,加上煤矿作业空间十分狭小,照明条件差等因素,目前常用的煤矿安监系统仍使用有线方式,即采用光缆、电力线缆或信号线缆等,有线方式存在以下缺陷: (1)布线繁琐,安装维护成本大。监测系统所需的大量光缆、电缆价格不菲,此外在复杂的地下环境布设线路同样需要消耗大量的人力物力。 (2)覆盖范围有限。由于地形环境复杂多变,矿井中存在着大量难以布线的区域,有线监控系统很难遍布矿井的各个地区,无法实现对整个矿井的全方位监测,为安全生产留下隐患。 (3)线路依赖性强。有线网络的自我修复能力较差,局部线路遭到破坏很可能造成整个监控系统的瘫痪。特别是发生爆炸事件时,线缆往往会受到致命的破坏,不能为搜救工作及事态检测提供信息。现阶段,随着各地矿井开采深度的增加,已有的安检系统难以扩展网络、灵活性不高已成为制约安全检测的瓶颈。这使得网络数据的可靠性、有效性和实时性得不到保证,难以确保重要数据及时传输。因此,利用无线网络构建网络简单、扩展性强的特点解决煤矿安检系统对实时性、可扩展性和低成本的需求已经非常迫切。1.2 瓦斯含量检测技术及Zigbee发展现状目前,瓦斯检测采用的是瓦斯巡回检查,即派专职人员以巡检的形式,定期采集指定地点的瓦斯信息。但是该方式存在以下缺点: (1) 人工获取数据、手工记录,无法做到实时检测。 (2) 瓦检员人身安全难以保证。 (3) 历史数据查询麻烦、不能根据历史记录直接进行分析。 所以设计更合理、更高效的瓦斯采集方案摆在了人们的面前。 Zigbee 无线网络是无线网络的一个成员,主要用于无线传感器网络的建立。无线传感器网络是由分布在给定区域内的众多无线传感器节点构成的网络。每一个传感器节点都有一种或多种传感器用来获取信息,并具有一定的计算能力。各节点之间通过网络协议实现信息的交流、汇集和处理,从而实现对局部区域内目标的探测和定位。随着通信技术、嵌入式技术和传感器技术的飞速发展,具有感知能力、计算能力和通信能力的微型传感器开始在世界范围内出现。 国际上比较有代表性和影响力的无线传感器网络实用项目有:遥控战场瓦斯监测系统、智能尘埃项目、野生动植物行为习性监控网络等。目前,英特尔公司与加州大学伯克利分校正领导者“微尘”技术的研究工作,已经成功研制了瓶盖大小的全能传感器,可以执行计算、检测与通信功能。在日本,日立公司已开发出了全球最小的无线传感器网络终端,该终端可以连接各种传感器包括温度、亮度、红外线以及加速度等。可以应用于安全管理和智能家庭。我国的无线传感器网络及其应用研究几乎与发达国家同步。2001 年由中国科学院牵头,由上海微系统所、微电子所、半导体所、电子所、软件所、中国科技大学等十余家科研院所和高校建立了传感器网络系统研发平台,在无线智能传感器网络通信技术、微型传感器、传感器节点等方面取得了很大进展。Zigbee无线传感器网络已经在各领域展开了广泛的应用。二、瓦斯浓度检测技术2.1 瓦斯传感器技术目前,矿井中常用的瓦斯传感器可分为热导式和热效式两大类。 热导式瓦斯传感器利用瓦斯与空气导热系数的不同而测量瓦斯浓度。这种传感器在工作时需通入恒定的电流,将其加热到一定的温度(180左右)才能工作,功耗较大,且其中的半导体热敏式电阻传感器受水蒸汽的影响较大,元件的一致性和互换性也较差。热导式瓦斯检测仪在测定低浓度的瓦斯时,输出信号很小误差较大。因此,这类传感器制成的瓦斯检测仪适用于测量高浓度的瓦斯(5%100%)。目前这种传感器在矿井中应用较少。 热效式瓦斯传感器(又称热催化式瓦斯传感器),其工作原理是利用可燃气体在催化剂的作用下进行无焰燃烧产生热量,使元件电阻因温度升高而发生变化,通过测量电阻端电压来测知瓦斯的浓度。这种传感器的优点是精度较高,输出信号较大(1%CH 时,输出电压可达 1520mV),且不受其它燃气和灰尘存在的影响。它的缺点是元件表面温度高(300450);寿命短(多数国家均保证 1 年);功耗大(其加热功率>1W。热催化元件功耗为 0.30.75W),易受硫、铅、磷、氯等的化合物干扰而使催化剂中毒,降低其灵敏度,甚至误报。综合上述因素,本课题中传感器器件选用DYNAMENT公司生产的MJC4传感器,其结构图如图2.1所示。图2.1 元件外形结构2.2 Zigbee无线网络技术ZigBee是基于IEEE802.15.4标准的低功耗局域网协议。根据国际标准规定,ZigBee技术是一种短距离、低功耗的无线通信技术。这一名称(又称紫蜂协议)来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。ZigBee是一种低速短距离传输的无线网络协议。ZigBee协议从下到上分别为物理层(PHY)、媒体访问控制层(MAC)、传输层(TL)、网络层(NWK)、应用层(APL)等。其中物理层和媒体访问控制层遵循IEEE 802.15.4标准的规定。它有如下特点:(1) 低功耗:由于Zigbee的传输速率低,发射功率仅为1mW,而且采用了休眠模式,功耗低,因此Zigbee设备非常省电。(2) 成本低:Zigbe模块的初始成本在 6 美元左右,估计很快就能降到 1.52.5 美元,并且Zigbe协议是免专利费的。(3) 延时短:通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延30ms,休眠激活的时延是 15ms,活动设备信道接入的时延为 15ms。(4) 可靠:采取了碰撞避免策略,同时为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。 (5) 安全:Zigbee提供了基于循环冗余校验(CRC)的数据包完整性检查功能,支持鉴权和认证。基于以上特点,Zigbee 网络成为无线传感器网络的首选,它非常适宜于在工矿环境下构建传感器网络。2.3 瓦斯检测系统设计方案本课题研究的是 Zigbee 无线传感器网络在瓦斯采集系统中的应用。因此,研究的重点在网络系统的建立上。另外传感器如何采集数据并将之放于网络,也是本课题的一个重点。下面介绍本系统的总体设计方案。本系统主要包括 Zigbee 无线网络传输部分和瓦斯信息采集和处理部分,将二者分开的目的是增加网络的应用范围,只需要建立一次网络就可以连接多种应用。其中,Zigbe无线网络部分的主要功能是完成矿井下信号的无线传输,它包括 Zigbee射频模块和底板模块两个部件。将二者分开是因为射频部分需要考虑板材的选取和天线的设计,将它们分开可以降低成本、避免干扰。Zigbee底板主要提供功能外设,包括模块电源设计、程序下载 Debug 口的设计、液晶显示电路设计、按键和各种接口设计等。两大部分通过串口进行数据的通信,其连接关系如下图: 图2.2 模块连接关系瓦斯采集及信息处理模块主要完成瓦斯信息的采集和处理。电路主要包括瓦斯传感器的配置,CPU主芯片MSP430F169的配置,液晶显示模块电路的设计,按键部分电路设计及各种接口电路的设计等。三、系统硬件电路设计3.1 系统总体设计瓦斯浓度检测仪电路按照I类电气设备(煤矿用电气设备)本质安全电路的要求进行设计,以MSP430F157为核心,外扩电源监视看门狗电路,传感器探头驱动电路,检测信号滤波放大电路,420mA电流环电路,RS485接口电路,报警输出接口及电源部分等,电路原理框图如图3.1所示。图3.1 系统总体原理图系统的硬件功能模块主要分为协调器、路由器、终端节点和瓦斯采集节点,其中协调器、路由器、终端节点因为主芯片相同可以用同一套硬件系统来实现,只要下载相应的软件即可完成相关功能。3.2 Zigbee网络模块电路设计Zigbee网络模块因为要包含协调器、路由器和终端节点三种网络设备的功能。因此需要完备的电路配置,本设计采用底板和射频板分离的方案,在底板上设计了各种功能。 (1) 电源部分:如下图3.4所示,电源部分采用电池供电和电源供电两种供电方式,用户可以自行选择。电池供电采用2节1.5V干电池,由于系统主板要求电源电压3.3V,输入电压不能小于2.8V,若电池电量降低供电电压会低于2.8V,为了最大限度使用电池,需要使用BOOST 电源芯片SP6641将3V的电池电压转换成 3.3V,然后使用线性电源芯SP6201过滤开关电源产生的纹波电压。电源供电方式,由于其输入电压为5V,同样需要转换为系统所需的3.3V,这里采用线性电源芯片AM1117 来完成电压的转换。图3.1 电源模块(2)串口部分:如下图 3.5 所示,用芯片 MAX3232 来完成串口的配置,同时加上发送和接收两个端口的 LED 灯指示,方便调试。系统选用 P0.2 和 P0.3 两个串口作为系统的输入输出串口。图3.2 串口模块(3)液晶显示部分:如下图3.7所示,本系统采用东显LCD12864-I型号的液晶模块,因为此模块是并行数据口,而CC2430引脚资源有限只能使用串行数据,所以使用74HC595芯片将CC2430的串行数据变换为并行数据再连接液晶模块。图3.3 液晶显示部分四、系统软件程序设计4.1 系统软件数据流程本系统主要通过串口透传方法将 A/D 采样的数据经终端节点送到网关协调器,其传输介质是电磁波,整个数据流程经过了多个模块,如下图 4.1 所示。图 4.1 系统软件数据流程网络模块都具有无线接受和发送的能力,应用程序只需为协议栈注册应用端口、为操作系统添加任务、为协议栈准备好数据就可以通过协议栈发送数据,接收方通过消息处理函数接收来自发送方的数据。终端节点需要完成加入网络的工作,加入网络后就可以从串口接收 A/D 采样数据并通过协议栈将数据无线发送。路由器的工作比终端节点点多了一个数据转发功能,这可以由协议栈完成,用户应用程序不作处理。4.2 串口透传应用程序设计大多数单片机和系统都支持串口数据传输。因此,使用串口连接瓦斯含量信息检测模块或其他外设模块非常方便。另外,如果网关支持串口,可以方便的将Zigbee协议转换为其他协议,利用已有的网络资源,避免重复投资。本课题根据协议栈提供的串口应用实例做了适合本系统的改动,设计了串口透传的应用层程序。使用该技术可以将所有具有串口功能的外设模块接入Zigbee网络,从而代替了有线连接。在透传系统中,所有的网络模块都具有串口的收发功能,只要上位机串口有数据输出,模块就把串口的数据以无线方式编码发送。当接收模块接收到发射模块发送的无线数据后,就会把解码后的数据按发送端的格式从串口输出,这样网络两端的上位机和下位机都通过串口收发数据而不用理会无线传输部分,这就是无线透传的工作。无线透传是一种使用UART串口的Zigbee网络应用,与其它应用的实现方法一样,UART串口透传应用需要将程序以任务的规范,加入操作系统,有网络操作系统调度执行在做Zigbee项目设计时,所有的应用,都以任务的方式加载到操作系统,由操作系统来调度。用户只需要编写自己的任务,以适当的方式将任务加入 OSAL的任务表中就可以了。OSAL主要负责任务管理、消息管理、电源管理、定时器管理和存储器管理等。Zigbee中的操作系统对任务的管理是基于任务轮询方式的,在系统的任何位置只要我们实现了osalInitTasks就可以将我们系统中的所有任务放在操作系统中执行。分别完成协议栈各层的初始化任务,各层之间的信息交换通过消息命令的方式来完成,在应用层接受到各类消息后由相应的处理函数来处理。用户任务初始化函数SerialApp_Init( taskID )加载到最后表示优先级最低。4.3 网关应用程序设计Zigbee网络是局域网,外界要使用Zigbee网络的数据必须通过网关把 Zigbee网络协议转换为外界网络的的协议。现今,最广泛使用的网络是TCP/IP 网络。所以本项目设计了Zigbee转TCP/IP 网关将协调器接收到的数据,通过串口交给到网关。网关将这些数据转化以太网格式,发送到远端的监控室。网关设计需要使用TCP/IP协议栈,TCP/IP协议是一个四层的分层体系结构。高层为传输控制协议(TCP,Transmission Control Protocol),它负责聚集信息或把文件拆分成更小的包。这些包通过网络传送到接收端的TCP层,接收端的TCP层把包还原为原始文件。低层是网际互联协议(IP,Internet Protocol),它处理每个包的地址部分,使这些包正确的到达目的地。TCP/IP使用客户端/服务器模式进行通信,TCP/IP通信是点对点的面向连接的协议,也即通信在网络中的一台主机与另一台主机之间进行,主机之间的数据传输可靠性由协议栈在保证。与TCP/IP协议相对的协议还有用户数据包协议(UDP),它不是面向连接的,因此网络数据是否到达对端要有用户程序考虑。还有一些协议是网络主机用来交换路由信息的,包括Internet控制信息协议(ICMP),内部网关协议(IGP),外部网关协议(EGP),边界网关协议(BGP)等等。图 4.2 网关数据流图本课题的网关采用串口转接以太网的方式实现,将串口输入的数据转化为TCP/IP协议数据通过以太网输出,从以太网输入的数据包先解码取出有效载荷后由串口输出。开发协议栈使用LWIP1.3.2,操作系统使用 UCOS II 2.86,CPU 使用ARM S3C6410,网关使用 ARM11 开发板设计。五、系统调试及实验结果5.1 系统调试本方案测试是在实验室环境下搭建一个测试环境,主要测试采集前端的瓦斯浓度测定功能、Zigbee 型网络的搭建功能以及瓦斯信息的无线发送功能。 首先,采集前端瓦斯浓度检测 本模块测试选择实验室用1%和5%的甲烷标准气样进行瓦斯浓度测定功能测定。将采集模块放在封闭的气室内,并持续向内通不同浓度的标准甲烷气样,最终测试的浓度信息会经过主控制芯片MSP430F169的处理直接通过串口传递给上位机,上位机通过串口调试助手显示接收的信息。需要注意的是,在进行试验之前,必须先将瓦斯传感器电阻调零,将电桥输出电压调为0。封闭气室最好也通气5分钟后再进行试验,保证气样将空气排尽。测试时,先向采集前端通1%的甲烷标准气样,过大约1分钟左右采集前端就能够检测到环境中的瓦斯浓度为1%,并通过串口将该浓度值显示在PC机上。然后,再向采集前端通5%的甲烷标准气样,过大约12分钟采集前端就能够检测到环境中的瓦斯浓度为5%。在进行瓦斯浓度测定功能测试时,要时刻注意标准气样钢瓶上流量计的读数,保证气体流量在200ML/s,否则向采集前端通气时,钢瓶流出的甲烷气样的浓度会和标准值之间有误差。然后搭建Zigbee 星型网络:每个终端节点受网络特性的影响,最大检测距离不应超过100米,这里选择70米。星型网络的搭建最少需要1个协调器一个终端节点,这里选择1个协调器,1个路由器,1个终端节点。网络的连接状态可通过 Zigbee Packet Sniffer2006 来检测到。最后瓦斯信息的无线发送功能:瓦斯浓度信息的采集发送端采用本文设计的瓦斯采集终端节点,发送网络采用前面测试的星型网络,接收到的数据通过 Zigbee网络转换到网关,网关将Zigbee网络的数据转换为TCP/IP 协议数据送往上位机,上位机上使用网络调试助手监控网关的数据。测试时,间隔不同的距离进行无线数据收发的测试。本课题使用 IAR EW MCS-51 软件设计了Zigbee无线网络应用程序,通过 Debug工具可以将编译好的程序下载到CC2430芯片中。在下载程序的时候,需要为不同的设备选择不同的工程。本课题的实验使用了协调器和终端节点两个工程,通过简单配置后将程序下载到设备中。其操作界面如下:图5.1 IAR操作界面5.2 实验结果当系统的各个模块都调试成功后,就可以连接起来运行整个系统通过PC机监控系统运行。系统分为两个部分网关部分和采集部分,网关部分由网关电路板和协调器设备组成,采集部分由MSP430A/D采样模块和终端节点组成。以下是实验室搭建的测试环境下的各个功能测试结果:(1)采集前端瓦斯浓度检测,下表5.1为瓦斯浓度检测结果表5.1 瓦斯浓度检测结果(2)Zigbee星型网络的搭建,网络搭建成功后的Zigbee Packet Sniffer2006 工作界面如下图所示:图5.2 Zigbee网络星型搭建(3)瓦斯信息的无线发送功能本课题采用网关将Zigbee网络的数据转换为TCP/IP协议数据送往上位机。因此,在上位机上使用网络调试助手监控网关的数据,即可查看Zigbee网络中终端节点送往协调器节点的数据。这种方式可以最大限度模拟真实环境下的系统构成。下表5.2为瓦斯信息无线发送的测试结果。 表5.2 无线发送测试结果 使用网关将Zigbee网络与以太网连接可以最大限度的利用已有网络资源,减少网络建设的重复投资。星型网络成功搭建后,完成瓦斯信息的顺利传输。六、总结与展望本论文对课题研究工作做了系统的总结,介绍了 Zigbee 无线传感器网络在瓦斯采集方面的应用,详细介绍了系统的软硬件设计包括 Zigbee 网络模块的设计和瓦斯采集模块的设计。对 Zigbee 协议栈的工作流程和使用方法做了详细说明,对其中各环节的工作原理进行了深入的分析。设计了利用 Zigbee 网络进行串口透传应用解决了瓦斯瓦斯含量信息检测模块与无线网络连接的问题,并介绍了 Zigbee 网络与地面监控室以太网连接的方法,说明了网关的作用以及设计方法。 本论文主要工作和研究成果是: (1) 介绍了Zigbee无线网络在瓦斯采集系统中的应用方案。探索了使用无线网络解决现有安检系统布线难、维护难、有效性差等问题的方法。 (2) 研究了Zigbee无线网络技术。在分析