电磁感应中的动力学问题专题练习(含解析).doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date电磁感应中的动力学问题专题练习(含解析)电磁感应中的动力学问题专题练习(含解析)电磁感应中的动力学问题专题练习(含解析)1. 如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab,cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则下列说法正确的是(A)A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2. 如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一稳定速度过一会后突然撤去外力.不计摩擦,则ab以后的运动情况可能是(C)A.减速运动到停止B.来回往复运动C.匀速运动 D.加速运动3. 如图所示,导线MN可无摩擦地沿长直导轨滑动,导轨位于水平方向的匀强磁场中,回路电阻是R,将MN由静止开始释放后的一段时间内,MN运动的加速度将(B)A.保持不变B.逐渐减小C.逐渐增大D.先增大后减小4. 如图所示,光滑平行导轨竖直放置,匀强磁场垂直导轨平面向里,导体棒ab与导轨接触良好,回路的总电阻保持为R不变.当ab以初速度v0沿导轨竖直下滑时,其运动情况是(D)A.做a=g的匀加速运动B.做a<g的变加速运动C.先做加速运动,后做匀速运动D.由于不知v0,B,L,R,m的具体值,因此无法确定其运动状态5. 如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直于导轨所在的平面向里,金属棒ab可沿导轨自由滑动,导轨一端跨接一个定值电阻R,导轨电阻不计,现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v时,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率恒定,当速度为v时,加速度为a2,最终也以速度2v做匀速运动,则(C)A.a2=a1B.a2=2a1C.a2=3a1D.a2=4a16. (多选)如图所示,矩形线框A在竖直平面内从静止开始下落,匀强磁场B方向水平且垂直于线框所在的平面,当线框的下边进入磁场而上边尚未进入磁场的过程中,线框A可能做(ABC)A.匀速下落运动 B.加速下落运动C.减速下落运动 D.匀减速下落运动7. (2016杭州高二检测)(多选)如图所示,磁感应强度为B的匀强磁场有理想界面,用力F将矩形线圈从磁场中匀速拉出.在其他条件不变的情况下(ABC)A.速度越大时,拉力做功越多B.线圈边长L1越大时,拉力做功越多C.线圈边长L2越大时,拉力做功越多D.线圈电阻越大时,拉力做功越多8. (2016茂名高二检测)(多选)如图,固定在水平面上的U形金属框上,静止放置有一金属杆ab,整个装置处于竖直向上的磁场中.当磁感应强度B均匀减小时,杆ab总保持静止,则在这一过程中(AD)A.杆中的感应电流方向是从b到aB.杆中的感应电流大小均匀增大C.金属杆所受安培力水平向左D.金属杆受到的摩擦力逐渐减小9. (多选)光滑无电阻水平导轨上有两相同金属棒a,b垂直于导轨放置,匀强磁场方向如图所示.现给a一向右初速v,则其后a,b的运动情况是(BD)A.a做匀加速运动,b做匀减速运动,最终两者速度相等B.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者速度相等C.a做加速度变小的变减速运动,b做加速度变小的变加速运动,最终两者加速度相等(不为零)D.开始一段时间两者的距离逐渐减小,最终两者距离不变10. 如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度B的大小;(2)电流稳定后,导体棒运动速度v的大小;(3)流经电流表电流的最大值Im.11.如图(甲)所示,两根足够长的直金属导轨MN,PQ平行放置.两导轨间距为L,M,P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图(乙),在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑时,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.12. 均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行.当cd边刚进入磁场时,(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h.13. U形金属导轨abcd原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc等长的金属棒PQ平行bc放在导轨上,棒左边靠着绝缘的固定竖直立柱e,f.已知磁感应强度B=0.8 T,导轨质量M=2 kg,其中bc段长0.5 m,电阻r=0.4 ,其余部分电阻不计,金属棒PQ质量m=0.6 kg、电阻R=0.2 、与导轨间的动摩擦因数=0.2.若向导轨施加方向向左、大小为F=2 N的水平拉力,如图所示.求导轨的最大加速度、最大电流和最大速度(设导轨足够长,g取10 m/s2)1、解析:ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL=ma知,ef做的是加速度减小的减速运动,故选项A正确.2、解析:用外力使金属杆ab在匀强磁场中沿垂直磁场方向运动时,金属杆产生感应电动势,对电容器充电,设棒向右,根据右手定则判断可知:ab中产生的感应电流方向从b到a,电容器上极板带正电,下极板带负电;稳定后速度不变,电容器充电结束,电流为零;“外力”和安培力均为零;“外力”撤去后ab保持向右匀速.故选项C正确.3、解析:导体MN速度逐渐增大,产生电流增大,MN受的安培力逐渐增大,加速度逐渐减小,选项B正确.4、解析:若v0很大,安培力很大,加速度有可能大于g,且为减速运动,故选项A,B,C均错.D正确.5、解析:按第一种模式拉动时,设恒力为F,由于最终速度为2v,即匀速,有F=BI1L,I1=,所以F=,当速度是v时ab棒所受安培力为F1.同理可得F1=,此时的加速度为a1.由牛顿第二定律得F-F1=ma1.联立以上各式得a1=.按第二种模式拉动时,设外力的恒定功率为P,最终的速度也是2v,由能量关系可知P=R=.速度为v时,ab棒所受的外力为F2,有P=F2v,此时的加速度为a2,ab棒所受的安培力仍为F1,根据牛顿第二定律得F2-F1=ma2,联立有关方程可以解得a2=,所以有a2=3a1.选项C正确.6、解析:线框下边刚进入磁场时,由于其做切割磁感线运动而产生感应电流.容易判知,此感应电流将使线框下边受到向上的安培力F安作用.由于下落高度即线框进入磁场时的速度大小不确定,因此F安可能大于、等于或小于线框重力G,故A,B,C三种情况都有可能.但线框不可能做匀减速运动.7、解析:用力F匀速拉出线圈的过程中所做的功为W=FL2,又F=F安=IBL1,I=,所以W=,可知选项A,B,C正确,D错误.8、解析:磁感应强度B减小时,由楞次定律知,感应电流由b到a,选项A正确;由E=n=nS知,B均匀减小时,电动势E不变,电流不变,选项B错误;由左手定则知,ab所受安培力水平向右,选项C错误;由F=BIL知,I,L不变,B减小,安培力减小;ab杆静止,安培力等于摩擦力,所以摩擦力减小,选项D正确.9、解析:a受安培力向左,b受安培力向右,a减速,b加速,回路中电流I=,逐渐减小,加速度都变小,当加速度等于零时,两棒匀速运动,距离不变,故选项B,D正确.10、解析:(1)电流稳定后,导体棒做匀速运动,受力平衡,有F安=G,即BIL=mg,解得B=.(2)由法拉第电磁感应定律得导体棒产生的感应电动势E=BLv,闭合电路中产生的感应电流I=,解得v=.(3)由题意知,导体棒刚进入磁场时的速度最大,设为vm,由机械能守恒定律得m=mgh,感应电动势的最大值Em=BLvm.感应电流的最大值Im=,解得Im=.答案:(1)(2)(3)11、解析: (1)如图所示,重力mg,竖直向下;支持力FN,垂直斜面向上,安培力F,沿斜面向上.(2)当ab杆速度为v时,感应电动势E=BLv,此时电路中电流I=,ab杆受到安培力F=BIL=,根据牛顿运动定律,有ma=mgsin -F=mgsin -,a=gsin -.(3)当a=0时,即gsin =时,杆达到最大速度vm,则vm=.答案:(1)见解析图(2)gsin -(3)12、解析:(1)cd边刚进入磁场时,线框速度v=线框中产生的感应电动势E=BLv=BL(2)此时线框中的电流I=cd切割磁感线相当于电源,cd两点间的电势差即路端电压U=I·R=BL.(3)安培力F安=BIL=根据牛顿第二定律mg-F安=ma,由a=0,解得下落高度h=.答案:(1)BL(2)BL(3)13、解析:刚拉动导轨时,I感=0,安培力为零,导轨有最大加速度am= m/s2=0.4 m/s2.随着导轨速度的增大,感应电流增大,加速度减小,当a=0时,速度最大.设速度最大值为vm,电流最大值为Im,此时导轨受到向右的安培力F安=BImL,F-mg-BImL=0,Im=,代入数据得Im= A=2 A.I=,Im=,vm= m/s=3 m/s.答案:0.4 m/s22 A3 m/s-