立体几何多面体与外接球问题专项归纳--[1].doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date立体几何多面体与外接球问题专项归纳-1一句话一类题立体几何多面体与外接球问题专项归纳立体几何多面体与外接球问题专项归纳1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是()A.16B.20C.24D.322、一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为()A.3B.4C.3D.63.在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.4.一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为()A.3B.4C.3D.6历届高考外接球内切球问题1. (陕西理6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A B C D 答案B2. 直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。 解:在中,可得,由正弦定理,可得外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为. 3正三棱柱内接于半径为的球,若两点的球面距离为,则正三棱柱的体积为 答案 84.表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为A B C D答案 A【解析】此正八面体是每个面的边长均为的正三角形,所以由知,则此球的直径为,故选A。5.已知正方体外接球的体积是,那么正方体的棱长等于( )A.2 B. C. D.答案 D6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A. 1 B. 13 C. 13 D. 19答案 C7.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为答案 8. (2007天津理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为答案 9.(2007全国理15)一个正四棱柱的各个顶点在一个直径为2 cm的球面上。如果正四棱柱的底面边长为1 cm,那么该棱柱的表面积为 cm2.答案 ABCPDEF10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥,则此正六棱锥的侧面积是_答案 11.(辽宁省抚顺一中2009届高三数学上学期第一次月考)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是 .答案 12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为( )ABCD以上都不对答案C13.(吉林省吉林市2008届上期末)设正方体的棱长为,则它的外接球的表面积为( )A B2 C4D答案C1、答案:C解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径R=.所以球的表面积是S=4R2=24.2、答案:A以四面体的棱长为正方体的面对角线构造正方体,则正方体内接于球,正方体棱长为1,则体对角线长等于球的直径,即2R=,所以S球=4R2=3.3、解将半球补成整个的球(见题中的图),同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的体对角线便是它的外接球的直径.设原正方体棱长为a,球的半径为R,则根据长方体的对角线性质,得(2R)2=a2+a2+(2a)2,即4R2=6a2.所以R=a.从而V半球=R3=a3,V正方体=a3.因此V半球V正方体=a3a3=2.4答案:A解析:以PA,PB,PC为棱作长方体,则该长方体的外接球就是三棱锥P-ABC的外接球,所以球的半径R=2,所以球的表面积是S=4R2=16.-