第5讲.竞赛123班.教师版(1).doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date第5讲.竞赛123班.教师版(1)第5讲.竞赛123班.教师版(1)经典应用题综合第五讲教学目标诸如鸡兔同笼、平均数问题、年龄问题、植树问题、牛吃草问题等内容,在五年级以前都已经讲授过,这些经典的算术问题虽然比较常见,但各类考试越来越注重学生的对数量关系的把握和灵活解决问题的能力,而不是生搬硬套某种经典的算术方法,本讲推出的主要是历次考试中碰到的数量关系,带有很强的个例特征。正所谓“见多”才能“识广”,我们希望同学们掌握此类问题的分析方法。1. 回顾应用题的基础分析方法;2. 精讲历次考试中碰到的经典数量关系。专题回顾【例1】 一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?【分析】设1人淘1分钟淘出的水量是“1”,摘录条件,将它们转化为如下形式方便分析3人 40分钟 3×40=120:原有水+40分钟的进水6人 16分钟 6×16=96 :原有水+16分钟的进水从上易发现:40-16=24分钟的进水量=120-96=24,即:1分钟的进水量=1; 那么原有水量:120-40×1=80;5人中有1人分钟可以把水淘完来淘每分钟的进水量1 ,剩下4人需要80÷4=20(分钟)将把水淘完,即5人淘水20分钟。【例2】 现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析】我们注意到:牛、马45天吃了 原有+45天新长的草 马、羊60天吃了 原有+60天新长的草 牛、羊90天吃了 原有+90天新长的草 由可得到牛、马90天吃了2原有+90天新长的草由结合条件“牛、羊一起吃草的速度为马吃草的速度”马90天吃了原有+90天新长的草。由、知,牛吃了90天,吃了原有的草;再结合知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草所以,由知马60天吃完原有的草,由知牛90天吃完原有的草现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为天.即牛、羊、马一起吃,需36天。经典精讲估算分析【例3】 某同学把他最喜爱的书顺序次编号为,所有编号之和是100的倍数且小于1000,则他编号的最大的数是_。【分析】设最大编号为,则,即。因为编号之和是的倍数,所以有因数和。因为,即,所以含有的最大数只能是,因此另一个数应含有因数。所以或中必有一个数是25,如果,那么不是8的倍数,所以,所以他编号的最大数是24。【例4】 一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满。现在知道,若两校都租用14座位的旅游车,则两校共需租用这种车72辆;若两校都租用19座的旅游车,则二小要比一小多租用这种车7辆。问两校参加这次春游的人数各是多少? 【分析】14×(72-2)+1+1=982<两校总人数<14×72=1008,因为是10的整数倍,所以总人数为1000人,或990人。二小比一小多租用7辆(19座),6×19+1=115<二小比一小多的人数<8×19-1=151,可能的情况有:120、130、140、150; 如果总人数为1000人,两校人数之差如为120,则一小有(1000-120)÷2=440,二小有560人; 如为130,则一小有(1000-130)÷2=435,二小有565人,不符; 如为140,则一小有(1000-140)÷2=430,二小有570人; 如为150,则一小有(1000-150)÷2=425,二小有575人,不符; 检验得到一小430人,二小570人。 如果总人数为990人,同样的检验两校人数之差为120、130、140、150,的人数情况都没有符合条件的答案。所以这次春游人数一小是430人,二小是570人。整体与部分【例5】 甲乙两个小朋友各有一袋糖,每袋糖不到20粒。如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后。甲的糖就是乙的糖粒数的3倍。那么甲乙两个小朋友共有多少粒。【分析】总体和部分,比较分析。甲给乙一定数量糖后,甲占总数的,乙给甲一定数量后,甲占总数的。则前后变化。糖的总数能被12整除。由于每袋糖不超过20粒,则有12,24,36三种可能。又由于前后变化为两倍的“同样数量的糖”,则只能是24。【拓展】在一次考试中,甲乙两人考试结果如下:甲答错了全部试题的,乙答错了7道题,甲乙都答错的题目占全部试题的,则甲、乙两人都答对的题目最少多少道?【解答】容斥原理。甲答错,乙答对的题占全部试题的。那么甲乙都答对的题目有的全部试题减去7道乙答错的题目。可见全部试题越少,甲、乙都答对的题目就越少。则至少有15道全部试题,则15×76道。【例6】 8只盒子,每只盒内放有同一种笔。8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支。在这些笔中,圆珠笔的支数是钢笔支数的2倍,钢笔支数是铅笔支数的,只有1只盒里放的是水彩笔。这盒水彩笔共有多少支? 【分析】(1)余数分析。设定钢笔的支数是1份,则圆珠笔的支数是2份,铅笔支数是3份,这三种笔总数是6份。那么笔的总数扣去水彩笔的数量要被6整除。把总数加起来则1723333638424951289。除以6的余数是1。而所有盒中的笔数,只有49除以6的余数是1。可见这盒水彩笔有49支。数量关系【例7】 小明爷爷的年龄是一个二位数,将此二位数的数字交换得到的数就是小明爸爸的年龄,又知道他们的年龄的差是小明年龄的4倍,求小明的年龄。【分析】设爷爷的年龄是,其中、都是数字,则爸爸的年龄是,年龄差是。 这差是4的倍数,所以是的倍数,但,而根据常识,小明爸爸的年龄不可能是十几岁,因此,,从而必有。小明的年龄是(岁)。【拓展】甲乙两班同学人数相等,各有一些同学参加了课外数学小组的活动,甲班参加的人数恰好是乙班未参加人数的,乙班参加的人数恰好是甲班未参加人数的。问:甲班未参加人数是乙班未参加人数的几分之几? 【解答】假设甲班参加的为,则乙班未参加的为。同时设乙班参加的为,则甲班未参加的为。则有。可见。则甲班未参加的是乙班未参加的。【例8】 爸爸、哥哥、妹妹三人现在的年龄和是64岁。当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁;当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁。现在三个人的年龄各是多少岁?【分析】(法一)(1)操作分析法,妹妹9岁时,如果再增加25岁,妹妹便是34岁。此时,哥哥也增加25岁。爸爸要保持是哥哥的三倍,则爸爸要再加上50岁。 (2)后一种情况设妹妹是岁,则妹妹到34岁,爸爸是,哥哥是,则有(1)的分析,有。可以得到。则岁。则哥哥是岁,爸爸是岁。 (3)岁。则妹妹是岁;哥哥是岁,爸爸是岁。(法二)年龄问题中不改变的数量是年龄差,所以我们可以以年龄差为未知数。设爸爸和哥哥的年龄差为,哥哥和妹妹的年龄差为,那么爸爸的年龄是哥哥年龄的3倍时,哥哥年龄为,哥哥的年龄是妹妹年龄的2倍时,妹妹的年龄为岁,根据题目给出的条件有以下等量关系。,这一条二元一次方程的解为。如果,现在妹妹的年龄为,那么有,解得,哥哥和爸爸的年龄分别是14岁和40岁。逻辑判断【例9】 、在一次满分为100分的考试中,得分都是大于91的整数,如果、的平均分为分,、的平均分为94分,是第一名,是第三名得96分,那么的得分是多少?【分析】如果是第二名(或并列第一名),那么,和得分都比第三名E的96分多,至少各得97分。这样最多得95-2×(97-95)=91(分),矛盾。所以不可能是第二名。同理,不可能是第二名。只有是第二名。从、的平均分是95,、的平均分是94,得知比多1×3=3(分)。又知、的得分都大于96,只有得100分,得97分。【例10】 某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.80元;当超过4吨时,超过部分每吨3.00元。某月甲乙两户共交水费26.40元,用水量之比为,问:甲乙两户各应交水费多少元?【分析】(1)2640不能被180整除,可见必有用户超过4吨。 (2)如果都超过4吨,则先扣除8×1.8014.40元,有26.4014.4012元。可见超过的水量为吨。总用水量便是8412吨。而甲乙的用水比5:3,5份和3份合起来是8份,对应12吨,则甲用了吨,乙用了吨。符合要求。(3)如果有乙没有到4吨,甲超过了4吨。分析一个极端的情况再去作比较:乙用了4吨,甲用了吨。此时需交水费元。如果和这种情况比较,乙用了不到吨,则水费只能是更少,矛盾。综上,甲应该交元。乙应该交元。【例11】 食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59。问:这五只羊各重多少千克?【分析】(1)可以设定羊的重量从轻到重为,E。则,。同时不难整体分析得到 千克。则 千克。(2)不难有。则千克;千克。千克,千克。【例12】 有红、黄、蓝、绿四种颜色的卡片,每种颜色的卡片各有3张。相同颜色的卡片上写相同的自然数,不同颜色的卡片上写不同的自然数。老师把这12张卡片发给6名同学,每人得到两张颜色不同的卡片。然后老师让学生分别求出各自两张卡片上两个自然数的和。六名同学交上来的答案分别为:92,125,133,147,158,191。老师看完6名同学的答案后说,只有一名同学的答案错了。问:四种颜色卡片上所写各数中最小数是多少?【分析】设四种颜色的卡片上写的数分别是,且 。 如果六个答案都正确,那么这六个答案可以两两分为三组,每组两数之和都等于。对比下式:;。推知,错误的数是或,并且 , ,。由,得到。 如果正确,那么应为,即或。因为两个自然数的和与差,奇偶性相同,而,所以。由此解得,代人(*)式,得到,。 如果正确,那么应为,即或。由知,由此解得,代人式,得到,。所以,最小数是或。补充题目【例1】 在期末考试,哥哥的数学成绩比语文高7分,弟弟的数学成绩是语文的。又知道弟弟的数学成绩比哥哥的数学成绩的高分,总成绩比哥哥低分,那么弟弟的语文成绩是多少分?【分析】把弟弟的语文成绩设为。则弟弟数学成绩是。哥哥的数学成绩为。哥哥语文成绩为。那么有总成绩的关系可以列式为:。则。弟弟数学成绩为分。哥哥数学成绩为分。哥哥语文成绩为分。【例2】 某书店对顾客实行一项优惠措施:每次买书元至元者优惠;每次买书元以上者(包含元)优惠。某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜元;如果三次合并一起买比三次分开买便宜元。已经知道第一次的书价是第三次书价的,问:这位顾客第二次买了多少钱的书?【分析】设第一、二、三次买书的钱数分别是、元。 因为三次合买比三次分开买便宜元,比元还多,所以,并且。 第一、二次中,每次买的钱至多获得的优惠,但是只有原来少于元,合买后超过元才能得的优惠,每次买的钱数,能得到的优惠少于元,现在得元的优惠,因此第一、二次每次买的钱数都少于元,而(元)。只有三次合买元,合买后才能得到更多的优惠,因此(元)。而(元),因此(元)。第二次买了元的书。【例3】 当王力的年龄像李彤现在这么大时,刘强的年龄比王力和李彤他们现在的年龄之和小岁。当刘强像王力现在这么大时,王力的年龄是岁。【分析】由题意知,刘强的年龄加上李彤与王力的年龄差,等于王力与李彤的年龄和减去,即,化为。当刘强像王力这么大时,即刘强的年龄减少岁,此时王力的年龄是岁。巩固精练1. 有一辆车,其前轮周长为米,后轮周长为米,则前进多少米,才能使前轮的圈数比后轮转的圈数多99圈。【分析】前进1米,前轮转过圈,后轮转过圈,那么差异为。那么99圈要前进99÷3705米。2. 某装订车间的工人要将一批书打包后送进邮局,每包书中所装的数目一样多。第一次他们领来了这批书的,结果打了14个包还多35本;第二次他们把剩下的书全部取来,连同第一次多的零头一起,刚好又打了11包。那么这批书共有多少本?【分析】这批书的,对应14个包35本。这批书的,对应个包,少本。 可见(个包本)÷7(11个包35)÷5。则个包。可见每个包可以装60本书。可见,对应本书。 这批书共有875×12÷7125×121500本。3. 某乡水电站按户收取电费,具体规定是:如果每户用电不超过24度,就按9分钱收费;如果超过24度,超过部分按每度2角钱收费。已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?【分析】96不能被9整除,也不能被20整除,说明甲乙两家不可能都不到24度,也不可能都超过24度。那么这道题便转化为20要整除,找到一个合适的。不难知道,个位要得到6,的个位只能是4。也就有。则969×420×3。可见甲用了27度电,乙用了20度电。甲交了24×93×20276分2.76元。乙交了20×9180分1.8元。4. 有几个同学想称一下体重,可是秤的秤砣不齐,只能称50千克以上的重量,他们只好每人都和其他人合称一次,共得到以下10个数据(单位:千克):75、78、79、80、81、82、83、84、86、88。问:有几名同学?他们的重量各是多少?【分析】首先,所以有5个同学。设体重从小到大为、。则有,。则;。综上为:,。 这是一项既包括舞蹈内容的柔美、飘逸,又有体育的刚劲、有力的女子运动,也被称为“水上芭蕾”。奥运会花样游泳包括双人和集体两项,比赛也在奥林匹克公园的国家游泳中心举行。每个国家或地区的奥委会或协会只能参加一个集体和一个双人项目。集体项目比赛每队应有人,但可报名替补队员。 按照规定,花样游泳比赛的泳池至少米宽、米长,并在其中米宽、米长的区域内,水深必须达到米。在规定动作比赛时,运动员必须头戴白色泳帽,身穿黑色游泳衣;自选动作比赛时,运动员需身穿艳丽的游泳衣,泳衣上可以设计不同的图案,头发盘成发髻并戴上各种美丽的头饰。 奥运会花样游泳只进行技术自选和自由自选比赛,最后总成绩由技术自选和自由自选各占,总成绩最高的集体和选手获得金牌。 自选比赛在比赛的时间限制、音响伴奏以及裁判员的评分要求上都有比较严格的规定。其中的技术自选受规则限制,按照一定动作内容和动作顺序完成整套动作,而自由自选则不受内容和动作顺序的限制,可自由创编,自由组合。一位从越南归来的美国战地记者给MBA学员放映一卷他在战场上实拍的影片:画面上有一群人奔逃,远处突然传来机枪扫射的声音,小小的人影,就一一倒下了。放完了,他问同学们看见了什么。“是血腥的杀人画面!”他没有说话,把片子摇回去,又放了一遍,并指着其中的一个人影:“你看!大家都是同时倒下去的,只有这一个,倒得特别慢,而且不是向前仆倒,她慢慢地蹲下去”看到同学们还是看不懂的神色。他居然抽搐了起来:“当枪战结束之后,我走近看,发现那是一个抱着孩子的年轻妈妈,她在中弹要死之前,居然还怕摔伤了幼子,而慢慢地蹲下去。她忍着不死啊!”在任何危难中母亲首先想到的不是自己的安危而是孩子的。那位“忍着不死”的妈妈是所有妈妈的写照。母爱超越生死。-