新北师大版八年级数学上册勾股定理专题训练优质讲义.doc
精品文档,仅供学习与交流,如有侵权请联系网站删除勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。如果用字母a,b,c分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。2、勾股数:满足a+b=c的三个 ,称为勾股数。常见勾股数有:3、常见平方数:专题归类:专题一、勾股定理与面积1、在RtABC中,C=,a=5,c=3.,则RtABC的面积S= 。2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 3、直线l上有三个正方形a、b、c,若a和c的面积分别为5和11,则b的面积为 labc4、在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4等于 。5、三条边分别是5,12,13的三角形的面积是 。6、如果一个三角形的三边长分别为a,b,c且满足:a+b+c+50=6a+8b+10c,则这个三角形的面积为 。7、如图1,BC=8,AB=10,CD是斜边的高,求CD的长?BDCA图17、如下图,在ABC中,AB=8cm,BC=15cm,P是到ABC三边距离相等的点,求点P到ABC三边的距离。8、有一块土地形状如图3所示,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。(添加辅助线构造直角三角形) DCBA图39、如右图:在四边形ABCD中,AB=2,CD=1,A=60°,求四边形ABCD的面积。10、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C的位置上,已知AB=3,BC=7,求:重合部分EBD的面积11、如图,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.专题二、勾股定理与折叠1、如图4,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在DC边上的点G处,求BE的长。图4EGCDBA2、有一个直角三角形纸片,两直角边的长AC=6cm,BC=8cm,现将直角边AC沿AD对折,使它落在斜边AB上,且与AE重合,求CD的长?EDBCA图53、如图6,在矩形纸片ABCD中,AB=,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在Q点处,AD与PQ相交于点H,BPE=(1) 求BE、QF的长图6PHFEQDCBA(2) 求四边形QEFH的面积。专题三、利用勾股定理列方程求线段的长度1.ABC中,AB=AC=20,BC=32,D是BC上一点,且ADAC,求BD的长专题四、勾股数的应用1、下列是勾股数的一组是( ) A 4,5,6, B 5,7,12 C 12,13,15 D 14 ,48,502、一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是 。3、下列是勾股数的一组是( ) A 2,3,4, B 5,6,7, C 9,40,41 D 10 24 254、观察下面表格中所给出的三个数a,b,c,其中a,b,c为正整数,且a<b<c (1):试找给他们的共同点,并证明你的结论 (2):当a=21时,求b,c的值,3,4,53+4=55,12,135+12=137,24,257+24=259,40,419+40=41.21,b,c21+b=c专题五、勾股定理及逆定理有关的几何证明1、 在四边形ABCD中,C是直角,AB=13,BC=3,CD=4,AD=12DCBA证明:ADBDDFCEBA3、在正方形ABCD中,E是BC的中点,F为CD上一点 且CF=CD试说明AEF是直角三角形。4、ABC三边的长为a,b, c,根据下列条件判断ABC的形状:a+b+c+200=12a+16b+20c;5、试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)的三角形是否是直角三角形?6、如图2-12,ABC中,C=90°,M是BC的中点,MDAB于D求证:AD2=AC2+BD2专题七、最短路线问题1、 有一正方体盒子,棱长是10cm,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?2、有一个长方体盒子。它的长是70cm,宽和高都是50cm,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?3、如图所示,一个二级台阶,每一级的长、宽、高分别为60cm、30cm、10cm,A和B是这个台阶上两个相对的端点,在A点处有一只蚂蚁它想到B点处觅食,那么它爬行的最短路线是多少?4、王力的家在高楼15层,一天他去买竹竿,如果电梯的长、宽、高分别为1.2m,1.2m,1.3m,则他所买的竹竿最大长度是多少?5、如图,已知圆锥的母线AS=10,侧面展开图的夹角是90°,点C为AS的中点,A处有一只蜗牛想吃到C处的食物,但它不能直接爬到C处,只能沿圆锥曲面爬行,请你画出蜗牛爬行的最短路程的图形并求出最短路程.ACBS【精品文档】第 3 页