数学必修二第二章知识点最新.docx
数学必修二第二章知识点数学必修二其次章学问点1方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.3、函数零点的求法:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:(1)>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.两个平面的位置关系:(1)两个平面相互平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-没有公共点;两个平面相交-有一条公共直线。a、平行两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。二面角的取值范围为0°,180°(3)二面角的棱:这一条直线叫做二面角的棱。(4)二面角的面:这两个半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上随意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。esp.两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面相互垂直。记为两平面垂直的判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直两个平面垂直的性质定理:假如两个平面相互垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。(3)0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线只通过一、三象限;当k0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。(2)若=(),b=()则b 。3、平面对量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,使得= e1+ e2。4、平面对量有关推论三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。若O是三角形ABC的外心,点M满意OA+OB+OC=OM,则M是三角形ABC的垂心。若O和三角形ABC共面,且满意OA+OB+OC=0,则O是三角形ABC的重心。三点共线:三点A,B,C共线推出OA=OB+aOC(+a=1)数学必修二其次章学问点51、数列概念数列是一种特别的函数。其特别性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集Nx或其有限子集1,2,3,n的函数,其中的1,2,3,n不能省略。用函数的观点相识数列是重要的思想方法,一般状况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不肯定有解析式,同样数列也并非都有通项公式。等差数列1、等差数列通项公式an=a1+(n1)dn=1时a1=S1n2时an=SnSn1an=kn+b(k,b为常数)推导过程:an=dn+a1d令d=k,a1d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简洁的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+a1+(n1)dSn=an+an1+an2+······+a1=an+(and)+(an2d)+······+an(n1)d由+得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n1)d÷2Sn=dn2÷2+n(a1d÷2)亦可得a1=2sn÷nan=snn(n1)d÷2÷nan=2sn÷na1好玩的是S2n1=(2n1)an,S2n+1=(2n+1)an+14、等差数列性质一、随意两项am,an的关系为:an=am+(nm)d它可以看作等差数列广义的通项公式。二、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an1=a3+an2=ak+ank+1,kNx三、若m,n,p,qNx,且m+n=p+q,则有am+an=ap+aq四、对随意的kNx,有Sk,S2kSk,S3kS2k,SnkS(n1)k成等差数列。等比数列1、等比中项假如在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。2、等比数列通项公式an=a1xq(n1)(其中首项是a1,公比是q)an=SnS(n1)(n2)前n项和当q1时,等比数列的前n项和的公式为Sn=a1(1qn)/(1q)=(a1a1xqn)/(1q)(q1)当q=1时,等比数列的前n项和的公式为Sn=na13、等比数列前n项和与通项的关系an=a1=s1(n=1)an=sns(n1)(n2)4、等比数列性质(1)若m、n、p、qNx,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an1=a3·an2=ak·ank+1,k1,2,n(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。记n=a1·a2an,则有2n1=(an)2n1,2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。(5)等比数列前n项之和Sn=a1(1qn)/(1q)(6)随意两项am,an的关系为an=am·q(nm)(7)在等比数列中,首项a1与公比q都不为零。留意:上述公式中an表示a的n次方。数学三角形斜边计算公式斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。三角形斜边长等于根号下两直角边的平方和,即斜边c=(a2+b2)解答过程如下:(1)在直角三角形中满意勾股定理在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2(2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=(a2+b2)。在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以运用毕达哥拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,假如其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。提高数学成果的窍门是什么找漏洞学生如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。上课学生的学习目标明确,留意力才会集中,听课效率才会高。除了预习,做题也是一种很好的找漏洞的方式。多做题不等于提高分数,只有多补漏洞,才能提高分数题目千千万,我们是做不完的。做题的是为了驾驭、巩固学问点,假如已经驾驭了,就没有必要再做了。学生应当把时间放在补漏洞上,预习也要引起高度重视。不要轻易放过一道错题对于学生错误的习题,老师会讲评一遍,学生更正一遍之后就了事,但这种看法是不正确的。从哪里倒下就在哪里爬起来,“错题是个宝,每天少不了,每天都在找,积累为大考。”这就要求学生反思三点,一、问题究竟出在哪里?二、产生错误的根本是什么?三、如何做才能避开下次犯同样的错误?假如每道错题都利用好的,还怕成果不能提高吗?落实的关键是检测和重复落实就是硬道理。看自己补漏洞的效果如何最好的方式就是检测,多次检测没有问题了,那么这个漏洞就不上了。补漏洞也不是一次、两次就能解决,须要肯定的重复。既要“亡羊补牢”,更要“有备无患”考试后,老师逐题分析错题、失分缘由找漏洞;制定切实有效的改进措施想方法;有针对性地加强专项训练补漏洞。有时“亡羊补牢”已经晚了,我们更应当“有备无患”。每天把学习上的问题记录下来并解决落实好。考前的模拟测试,也是一个好方法。数学必修二其次章学问点6直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。直线在平面内有多数个公共点;直线与平面相交有且只有一个公共点;直线与平面平行没有公共点。直线与平面相交和平行统称为直线在平面外。直线与平面垂直的判定:假如直线L与平面内的随意始终线都垂直,我们就说直线L与平面相互垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。直线与平面的夹角范围0,90°或者说是0,/2这个范围。当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。根据规定,选择锐角的那一对对顶角作为直线和直线的夹角。直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为,cos=(m_n)/|m|n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0°提高数学成果的技巧是什么课内重视听讲,课后刚好复习接受一种新的学问,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,主动思索。下课之后要刚好复习,遇到不懂的地方要刚好去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的驾驭公式及推理过程,尽量不要去翻书。尽量自己思索,不要急于翻看答案。还要常常性的总结和复习,把学问点结合起来,变成自己的学问体系。多做题,养成良好的解题习惯要想学好数学,大量做题是必可避开的,娴熟地驾驭各种题型,这样才能有效的提高数学成果。刚起先做题的时候先以书上习题为主,答好基础,然后渐渐增加难度,开拓思路,练习各种类型的解题思路,对于简单出现错误的题型,应当记录下来,反复加以联系。在做题的时候应当养成良好的解题习惯,集中留意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。数学三角函数学问点1.终边与终边相同(的终边在终边所在射线上).终边与终边共线(的终边在终边所在直线上).终边与终边关于轴对称终边与终边关于轴对称终边与终边关于原点对称一般地:终边与终边关于角的终边对称.与的终边关系由“两等分各象限、一二三四”确定.2.弧长公式:,扇形面积公式:1弧度(1rad).3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,正弦纵坐标、余弦横坐标、正切纵坐标除以横坐标之商”;务必记住:单位圆中角终边的改变与值的大小改变的关系为锐角5.三角函数同角关系中,平方关系的运用中,务必重视“依据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!角的变换主要有:已知角与特别角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.8.三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性留意:正切函数、余切函数的定义域;肯定值对三角函数周期性的影响:一般说来,某一周期函数解析式加肯定值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加肯定值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.9.三角形中的三角函数:(1)内角和定理:三角形三角和为,随意两角和与第三个角总互补,随意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角随意两边的平方和大于第三边的平方.(2)正弦定理:(R为三角形外接圆的半径).(3)余弦定理:常选用余弦定理鉴定三角形的类型.数学必修二其次章学问点7简洁随机抽样1.总体和样本在统计学中,把探讨对象的全体叫做总体.把每个探讨对象叫做个体.把总体中个体的总数叫做总体容量.为了探讨总体的有关性质,一般从总体中随机抽取一部分:探讨,我们称它为样本.其中个体的个数称为样本容量.2.简洁随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。简洁随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。3.简洁随机抽样常用的方法:(1)抽签法;随机数表法;计算机模拟法;运用统计软件干脆抽取。在简洁随机抽样的样本容量设计中,主要考虑:总体变异状况;允许误差范围;概率保证程度。4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)打算抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜爱的体育活动状况。5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参与某项活动。系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本采纳简洁随机抽样的方法抽取。K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于探讨的变量来说,应是随机的,即不存在某种与探讨变量相关的规则分布。可以在调查允许的条件下,从不同的样本起先抽样,对比几次样本的特点。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简洁。更为重要的是,假如有某种与调查指标相关的协助变量可供运用,总体单元按协助变量的大小依次排队的话,运用系统抽样可以大大提高估计精度。分层抽样1.分层抽样(类型抽样):先将总体中的全部单位根据某种特征或标记(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系用抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。两种方法:1.先以分层变量将总体划分为若干层,再根据各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的依次整齐排列,最终用系统抽样的方法抽取样本。2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,全部的样本进而代表总体。分层标准:(1)以调查所要分析和探讨的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。3.分层的比例问题:(1)按比例分层抽样:依据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会特别少,此时采纳该方法,主要是便于对不同层次的子总体进行特地探讨或进行相互比较。假如要用样本资料推断总体时,则须要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据复原到总体中各层实际的比例结构。用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,假如抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不行避开的。虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特殊是当样本量很大时,它们的确反映了总体的信息。4.(1)假如把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)假如把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的最大值和最小值对标准差的影响,区间的应用;“去掉一个最高分,去掉一个最低分”中的科学道理两个变量的线性相关1、概念:(1)回来直线方程(2)回来系数2.最小二乘法3.直线回来方程的应用(1)描述两变量之间的依存关系;利用直线回来方程即可定量描述两个变量间依存的数量关系(2)利用回来方程进行预料;把预报因子(即自变量x)代入回来方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。(3)利用回来方程进行统计限制规定Y值的改变,通过限制x的范围来实现统计限制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回来方程,即可通过限制汽车流量来限制空气中NO2的浓度。4.应用直线回来的留意事项(1)做回来分析要有实际意义;(2)回来分析前,最好先作出散点图;(3)回来直线不要外延。数学集合学问点集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的全部领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子集。)数学的学习方法逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获得的。学习数学就要主动主动地参加学习过程,养成实事求是的科学看法,独立思索、勇于探究的创新精神。记数学笔记,特殊是对概念理解的不同侧面和数学规律,老师在课堂中拓展的课外学问。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。