欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    等差数列前n项和的公式说课稿汇总.docx

    • 资源ID:28881026       资源大小:19.58KB        全文页数:16页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    等差数列前n项和的公式说课稿汇总.docx

    等差数列前n项和的公式说课稿等差数列前n项和的公式说课稿1教学目标A、学问目标:驾驭等差数列前n项和公式的推导方法;驾驭公式的运用。B、实力目标:(1)通过公式的探究、发觉,在学问发生、发展以及形成过程中培育学生视察、联想、归纳、分析、综合和逻辑推理的实力。(2)利用以退求进的思维策略,遵循从特别到一般的认知规律,让学生在实践中通过视察、尝试、分析、类比的方法导出等差数列的求和公式,培育学生类比思维实力。(3)通过对公式从不同角度、不同侧面的剖析,培育学生思维的敏捷性,提高学生分析问题和解决问题的实力。C、情感目标:(数学文化价值)(1)公式的发觉反映了普遍性寓于特别性之中,从而使学生受到辩证唯物主义思想的熏陶。(2)通过公式的运用,树立学生"大众教学"的思想意识。(3)通过生动详细的现实问题,令人着迷的数学史,激发学生探究的爱好和欲望,树立学生求真的志气和自信念,增加学生学好数学的心理体验,产生酷爱数学的情感。教学重点:等差数列前n项和的公式。教学难点:等差数列前n项和的公式的敏捷运用。教学方法:启发、探讨、引导式。教具:现代教化多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经驾驭了等差数列的概念、通项公式及其有关性质,今日要进一步探讨等差数列的前n项和公式。提起数列求和,我们自然会想到德国宏大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次老师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使老师特别惊讶,那么高斯是采纳了什么方法来奇妙地计算出来的呢?假如大家也懂得那样奇妙计算,那你们就是二十世纪末的新高斯。(老师视察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他好玩的解法呢?小组探讨后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。生2:可设S=1+2+3+4+5+6+7+8+9+10,依据加法交换律,又可写成S=10+9+8+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=10×11=110所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100全部自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一特性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq。二、教授新课(尝试推导)师:假如已知等差数列的首项a1,项数为n,第n项an,依据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?依据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=(I)师:好!假如已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+ d(II)上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发觉,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=na1+ d;这些量中有几个可自由改变?(三个)从而了解到:只要知道其中随意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。三、公式的应用(通过实例演练,形成技能)。1、干脆代公式(让学生快速熟识公式,即用基本量观点相识公式)例2、计算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:干脆利用等差数列求和公式(I),得(1)1+2+3+.+n=(2)1+3+5+.+(2n-1)=(3)2+4+6+.+2n=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否干脆运用Sn公式求解?若不能,那应如何解答?小组探讨后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应细致视察,找寻规律,往往会找寻到好的方法。留意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,假如a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66×(-2)=-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+=145师:通过上面例题我们驾驭了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们依据例3自己编题,作为本节的课外练习题,以便下节课沟通。师:(接着引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否肯定非来求得a1,d不行呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。2、用整体观点相识Sn公式。例4,在等差数列an,(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(老师启发学生解)师:来看第(1)小题,写出的计算公式S16=8(a1+a6)与已知相比较,你发觉了什么?生10:依据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。师:对!(简洁小结)这个题目依据已知等式是不能干脆求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生视察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来相识Sn公式后,这留给同学们课外接着思索。最终请大家课外思索Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于全部自然数n,都有Sn=。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟识对Sn公式的运用。生12:1、运用Sn公式要留意此等差数列的项数n的值。2、详细用Sn公式时,要依据已知敏捷选择公式(I)或(II),驾驭知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要仔细视察,敏捷应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中敏捷应用所学性质,要订正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发觉更多的性质,主动主动地去学习。本节所渗透的数学方法;视察、尝试、分析、归纳、类比、特定系数等。数学思想:类比思想、整体思想、方程思想、函数思想等。作业:P49:13、14、15、17等差数列前n项和的公式说课稿2以下是中学数学等差数列前n项和的公式说课稿,仅供参考。教学目标A、学问目标:驾驭等差数列前n项和公式的推导方法;驾驭公式的运用。B、实力目标:(1)通过公式的探究、发觉,在学问发生、发展以及形成过程中培育学生视察、联想、归纳、分析、综合和逻辑推理的实力。(2)利用以退求进的思维策略,遵循从特别到一般的认知规律,让学生在实践中通过视察、尝试、分析、类比的方法导出等差数列的求和公式,培育学生类比思维实力。(3)通过对公式从不同角度、不同侧面的剖析,培育学生思维的敏捷性,提高学生分析问题和解决问题的实力。C、情感目标:(数学文化价值)(1)公式的发觉反映了普遍性寓于特别性之中,从而使学生受到辩证唯物主义思想的熏陶。(2)通过公式的运用,树立学生"大众教学"的思想意识。(3)通过生动详细的现实问题,令人着迷的数学史,激发学生探究的爱好和欲望,树立学生求真的志气和自信念,增加学生学好数学的心理体验,产生酷爱数学的情感。教学重点:等差数列前n项和的公式。教学难点:等差数列前n项和的公式的敏捷运用。教学方法:启发、探讨、引导式。教具:现代教化多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经驾驭了等差数列的概念、通项公式及其有关性质,今日要进一步探讨等差数列的前n项和公式。提起数列求和,我们自然会想到德国宏大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次老师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使老师特别惊讶,那么高斯是采纳了什么方法来奇妙地计算出来的呢?假如大家也懂得那样奇妙计算,那你们就是二十世纪末的新高斯。(老师视察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他好玩的解法呢?小组探讨后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。生2:可设S=1+2+3+4+5+6+7+8+9+10,依据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=10×11=11010个所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100全部自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一特性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq.二、教授新课(尝试推导)师:假如已知等差数列的首项a1,项数为n,第n项an,依据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?依据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=#FormatImgID_0#(I)师:好!假如已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+#FormatImgID_1#d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发觉,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=#FormatImgID_2#=na1+#FormatImgID_3#d;这些量中有几个可自由改变?(三个)从而了解到:只要知道其中随意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。三、公式的应用(通过实例演练,形成技能)。1、干脆代公式(让学生快速熟识公式,即用基本量观点相识公式)例2、计算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:干脆利用等差数列求和公式(I),得(1)1+2+3+.+n=#FormatImgID_4#(2)1+3+5+.+(2n-1)=#FormatImgID_5#(3)2+4+6+.+2n=#FormatImgID_6#=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否干脆运用Sn公式求解?若不能,那应如何解答?小组探讨后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应细致视察,找寻规律,往往会找寻到好的方法。留意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,假如a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66×(-2)=-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+#FormatImgID_7#=145师:通过上面例题我们驾驭了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们依据例3自己编题,作为本节的课外练习题,以便下节课沟通。师:(接着引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否肯定非来求得a1,d不行呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。2、用整体观点相识Sn公式。例4,在等差数列an, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(老师启发学生解)师:来看第(1)小题,写出的计算公式S16=#FormatImgID_8#=8(a1+a6)与已知相比较,你发觉了什么?生10:依据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。师:对!(简洁小结)这个题目依据已知等式是不能干脆求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生视察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来相识Sn公式后,这留给同学们课外接着思索。最终请大家课外思索Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于全部自然数n,都有Sn=#FormatImgID_9#。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟识对Sn公式的运用。生12:1、运用Sn公式要留意此等差数列的项数n的值。2、详细用Sn公式时,要依据已知敏捷选择公式(I)或(II),驾驭知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要仔细视察,敏捷应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中敏捷应用所学性质,要订正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发觉更多的性质,主动主动地去学习。本节所渗透的数学方法;视察、尝试、分析、归纳、类比、特定系数等。数学思想:类比思想、整体思想、方程思想、函数思想等。

    注意事项

    本文(等差数列前n项和的公式说课稿汇总.docx)为本站会员(ylj18****41534)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开