八年级数学知识点整理精编.docx
八年级数学知识点整理八年级数学学问点整理11.分式:一般地,用A、B表示两个整式,AB就可以表示为 的形式,假如B中含有字母,式子 叫做分式.2.有理式:整式与分式统称有理式;即 .3.对于分式的两个重要推断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;留意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)留意:在分式中,分子、分母、分式本身的符号,变更其中任何两个,分式的值不变; 即(3)繁分式化简时,采纳分子分母同乘小分母的最小公倍数的方法,比较简洁.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;留意:分式约分前常常须要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;留意:分式计算的最终结果要求化为最简分式.7.分式的乘除法法则: .8.分式的乘方: .9.负整指数计算法则:(1)公式: a0=1(a0), a-n= (a(2)正整指数的运算法则都可用于负整指数计算;(3)公式: , ;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:依据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;留意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.12.同分母与异分母的分式加减法法则: .13.含有字母系数的一元一次方程:在方程ax+b=0(a0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.留意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;留意:公式变形的本质就是解含有字母系数的方程.特殊要留意:字母方程两边同时乘以含字母的代数式时,一般须要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;留意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必需验增根;留意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;留意:由此可推断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但须要增加验增根的程序.希望为大家供应的八年级上册数学学问点讲解,能够对大家有用,更多相关内容,请刚好关注数学网!八年级数学学问点整理2函数及其相关概念1、变量与常量在某一改变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一改变过程中有两个变量x与y,假如对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的依次,把所描各点用平滑的曲线连接起来。八年级数学学问点整理3四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线相互平分。平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线相互平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。三角形的中位线平行于三角形的第三边,且等于第三边的一半。直角三角形斜边上的中线等于斜边的一半。矩形的定义:有一个角是直角的平行四边形。矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。2.对角线相等的平行四边形是矩形。3.有三个角是直角的四边形是矩形。菱形的定义:邻边相等的平行四边形。菱形的性质:菱形的四条边都相等;菱形的两条对角线相互垂直,并且每一条对角线平分一组对角。菱形的判定定理:1.一组邻边相等的平行四边形是菱形。2.对角线相互垂直的平行四边形是菱形。3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。八年级数学学问点整理4一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0;另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等;(2)有特定意义的数,如圆周率,或化简后含有的数,如 +8等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和肯定值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、肯定值在数轴上,一个数所对应的点与原点的距离,叫做该数的肯定值。(|a|0)。零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数假如a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。解题时要真正驾驭数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。