第5章-机械零件中的载荷、静应力和变形ppt课件.ppt
-
资源ID:29291745
资源大小:1.45MB
全文页数:41页
- 资源格式: PPT
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
第5章-机械零件中的载荷、静应力和变形ppt课件.ppt
第第5 5章章 机械零件中的载荷、静机械零件中的载荷、静 应力和变形应力和变形华南理工大学华南理工大学 5.1 机械零件的载荷机械零件的载荷 5.2 机械零件的应力机械零件的应力 5.3 机械零件的变形机械零件的变形5.l 机械零件的载荷机械零件的载荷 5.1.1 载荷的简化和力学模型载荷的简化和力学模型 图图b所示钢丝绳受力使轴发生所示钢丝绳受力使轴发生弯曲变形。弯曲变形。 载荷在轮毂和轴承间的轴段呈载荷在轮毂和轴承间的轴段呈曲线状分布,如图曲线状分布,如图c所示。所示。 通常可将载荷简化为直线分布,通常可将载荷简化为直线分布,如图如图d所示,使计算得到简化。所示,使计算得到简化。 进一步可将载荷简化为集中进一步可将载荷简化为集中力,轴简化为一直线,即得如图力,轴简化为一直线,即得如图e所示的力学模型所示的力学模型(a)(b)(c)(d) 如图如图a所示的滑轮轴,轴两端所示的滑轮轴,轴两端用滑动轴承支承。用滑动轴承支承。(e)FR2R1图图5.1 轴受载的力学模型轴受载的力学模型5.1.2 载荷的分类载荷的分类1.静载荷和变载荷静载荷和变载荷 载荷可根据其性质分为静载荷和变载荷。载荷可根据其性质分为静载荷和变载荷。静载荷静载荷:载荷的大小或方向不随时间变化或变化极缓慢载荷的大小或方向不随时间变化或变化极缓慢变载荷变载荷:载荷的大小或方向随时间有明显的变化载荷的大小或方向随时间有明显的变化2.工作载荷、名义载荷和计算载荷工作载荷、名义载荷和计算载荷 在机械设计计算中,载荷又有工作载荷、名义载在机械设计计算中,载荷又有工作载荷、名义载荷和计算载荷之分。荷和计算载荷之分。 工作载荷:工作载荷:是机械正常工作时所受的实际载荷。是机械正常工作时所受的实际载荷。 用用 F和和T分别表示力和转矩。若原动机的额定功率分别表示力和转矩。若原动机的额定功率为为 P(kW)、额定转速为)、额定转速为n(rpm)时,传动零件上的)时,传动零件上的名义转矩名义转矩T(N.m)为为 N m (5.1)9550PTin式中:式中:i由原动机到所计算零件之间的总传动比;由原动机到所计算零件之间的总传动比; 由原动机到所计算零件之间传动链的总效率。由原动机到所计算零件之间传动链的总效率。名义载荷:名义载荷: 缺乏工作载荷的载荷谱,或难于确定工作载荷时,缺乏工作载荷的载荷谱,或难于确定工作载荷时,常用原动机的额定功率,或根据机器在稳定和理想工作常用原动机的额定功率,或根据机器在稳定和理想工作条件下的工作阻力求出的作用在零件上的载荷条件下的工作阻力求出的作用在零件上的载荷 。 (5.2)cacaFKFTKT 机械零件设计时常按机械零件设计时常按计算载荷计算载荷进行计算。进行计算。 为了安全起见,计算用的载荷值应考虑零件在工作中受到的为了安全起见,计算用的载荷值应考虑零件在工作中受到的各种附加载荷,如由机械振动、工作阻力变动、载荷在零件上分各种附加载荷,如由机械振动、工作阻力变动、载荷在零件上分布不均匀等因素引起的附加载荷。这些附加载荷可通过动力学分布不均匀等因素引起的附加载荷。这些附加载荷可通过动力学分析或实测确定。如果缺乏这方面的资料,可用一个载荷系数析或实测确定。如果缺乏这方面的资料,可用一个载荷系数K对对名义载荷进行修正。名义载荷进行修正。 计算载荷计算载荷Fca (力)或(力)或Tca(力矩)为载荷系数(力矩)为载荷系数K与名与名义载荷的乘积义载荷的乘积,即:,即:载荷系数载荷系数K ?5.2 机械零件的应力机械零件的应力 应力也可按其随时间变化的情况分为应力也可按其随时间变化的情况分为静应力静应力和和变变应力应力。 静应力静应力:不随时间而变化的应力不随时间而变化的应力(或或变化很小变化很小) 变应力变应力:随时间不断变化的应力随时间不断变化的应力 受静载荷作用受静载荷作用的零件也可以的零件也可以产生变应力产生变应力 图图5.l所示的滑轮轴,载荷不随时间变化,是所示的滑轮轴,载荷不随时间变化,是静载荷静载荷。当轴不。当轴不转动而滑轮转动时,轴所受的弯曲应力为静应力;但是,当轴与转动而滑轮转动时,轴所受的弯曲应力为静应力;但是,当轴与滑轮固定联接(例如用键联接)并随滑轮一起转动时,轴的弯曲滑轮固定联接(例如用键联接)并随滑轮一起转动时,轴的弯曲应力则为变应力。因此,应力与载荷的性质并不全是对应的。当应力则为变应力。因此,应力与载荷的性质并不全是对应的。当然变载荷必然产生变应力。然变载荷必然产生变应力。 5.2.1 应力计算应力计算机械零件工作时机械零件工作时,在载荷作用下在载荷作用下,零件内部和表面会零件内部和表面会产生应力。根据载荷作用的方式不同产生的应力包括拉产生应力。根据载荷作用的方式不同产生的应力包括拉伸、压缩、剪切、挤压、扭转、弯曲和接触应力。伸、压缩、剪切、挤压、扭转、弯曲和接触应力。 1.拉伸拉伸: 图图5.2为拉杆联接,图为拉杆联接,图5.2a为各部分的尺寸为各部分的尺寸和受力情况。和受力情况。 当联接杆受实线箭头拉力当联接杆受实线箭头拉力F作用时,杆内作用时,杆内将产生拉应力将产生拉应力 ,其值为,其值为(5.3) FA式中:式中:A为杆的截面面积,为杆的截面面积,A= D2/4。DDbb2bFFd开口销开口销FF图图5.2 (a)拉杆连接)拉杆连接2.压缩压缩:(5-4)cFADDbb2bFFd开口销开口销FF图图5.2 (a)拉杆连接)拉杆连接 图图5.2的杆联接受虚线箭头压力的杆联接受虚线箭头压力F作用时两作用时两联接杆将受压应力联接杆将受压应力 c, 其值为其值为 在受拉力在受拉力F作用下,销钉的截面作用下,销钉的截面、两、两杆的截面杆的截面和和均受到剪切。均受到剪切。 3.剪切剪切:如图如图b所示,所示, 通常假定剪应力是均匀分布的,通常假定剪应力是均匀分布的,则这些剪切面上的剪应力则这些剪切面上的剪应力 为为FA (5-5)式中:式中:A为各个零件本身受剪切面积之和,如销钉为各个零件本身受剪切面积之和,如销钉A=2 d2/4;杆接头;杆接头A=4cb。F杆杆AFa F杆杆B 销钉销钉F 图图5.2(b)拉杆连接各零件受剪切和挤压部位)拉杆连接各零件受剪切和挤压部位4.挤压挤压:如图如图b所示,所示, 在销钉和杆的钉孔互相接触压紧在销钉和杆的钉孔互相接触压紧的表面的表面、处受到挤压的作用。处受到挤压的作用。F杆杆AF杆杆B 销钉销钉图图5.2 (c) 杆杆A受挤压的情况受挤压的情况图图c所示为杆所示为杆A钉孔受挤压的情况。钉孔受挤压的情况。F挤压应力图挤压应力图F受挤压后也的变形图受挤压后也的变形图F受力的简化图受力的简化图F挤压应力图挤压应力图F受挤压后也的变形图受挤压后也的变形图F受力的简化图受力的简化图 挤压问题的条件性计算挤压问题的条件性计算:假定挤压应力是均匀分布假定挤压应力是均匀分布在钉孔的有效挤压面上,有效挤压面积就是实际受挤在钉孔的有效挤压面上,有效挤压面积就是实际受挤压面积在钉孔直径上的投影面积压面积在钉孔直径上的投影面积A=2bd。钉孔表面的。钉孔表面的挤压应力为挤压应力为AFp 挤压问题的条件性计算挤压问题的条件性计算:假定挤压应力是均匀分布假定挤压应力是均匀分布在钉孔的有效挤压面上,有效挤压面积就是实际受挤在钉孔的有效挤压面上,有效挤压面积就是实际受挤压面积在钉孔直径上的投影面积压面积在钉孔直径上的投影面积A=2bd。钉孔表面的。钉孔表面的挤压应力为挤压应力为AFp 接触表面之间有相对滑动时,常常用单位面积上接触表面之间有相对滑动时,常常用单位面积上的压力来控制磨损。这种压力称为的压力来控制磨损。这种压力称为压应力压应力,例如滑动轴,例如滑动轴承的轴颈和轴瓦间的情况。压应力一般用承的轴颈和轴瓦间的情况。压应力一般用p表示,其值表示,其值为为 AFp 5.扭转扭转TWT(5.8) 式中:式中:WT一抗扭截面系数,圆截面一抗扭截面系数,圆截面WT= d3/16 0.2d3。TTmaxd(a) 传动轴传动轴(b) 轴的扭切应力轴的扭切应力图图5.3传动轴的扭转传动轴的扭转 当受到转矩当受到转矩T作用时,轴受扭转,扭转作用时,轴受扭转,扭转剪应力是不均匀分布的(图剪应力是不均匀分布的(图5.3b),), 圆轴截面的扭转圆轴截面的扭转剪应力最大值为剪应力最大值为6.弯曲弯曲 车轮轴的受力情况车轮轴的受力情况(a) 车轮轴车轮轴FFFFFFa(b) 车轴受力车轴受力图图5.4 车轴的弯曲车轴的弯曲+b+b-b-b6.弯曲弯曲: 从图可看出弯曲应力不是均匀分布的,在中性面上为零,中从图可看出弯曲应力不是均匀分布的,在中性面上为零,中性面一侧受拉伸,另一侧受压缩。性面一侧受拉伸,另一侧受压缩。M(c) 弯矩弯矩(d) 弯曲应力分布弯曲应力分布图图5.4 车轴的弯曲车轴的弯曲(a) 车轮轴车轮轴FFFFFFa(b) 车轴受力车轴受力 车轴轮受的弯矩车轴轮受的弯矩M,轴的横截面上的应力分布。,轴的横截面上的应力分布。 轴表面上的应力轴表面上的应力 达到最大达到最大 ,其值为,其值为bbMW(5.9a)式中,式中,W抗弯截面系数,对于轴,抗弯截面系数,对于轴, W= d3/32 0.1d3。 各种形状的截面系数各种形状的截面系数WT和和W可由设计手册查得。可由设计手册查得。 轴的中段所受最大弯矩轴的中段所受最大弯矩MFa,此段的最大弯曲,此段的最大弯曲应力为应力为30.1bFad(5.9b) 在设计受扭转和弯曲作用的机械零件时,为充分发在设计受扭转和弯曲作用的机械零件时,为充分发挥材料的作用,可采用挥材料的作用,可采用空心轴工字梁空心轴工字梁和和槽梁槽梁等,与同等,与同样截面积的实心轴和矩形梁比较,其抗扭和抗弯截面样截面积的实心轴和矩形梁比较,其抗扭和抗弯截面系数系数WT和和W将增大,从而降低扭转剪应力和弯曲应力。将增大,从而降低扭转剪应力和弯曲应力。 从上面分析可以看出,由于拉伸、压缩、挤压和从上面分析可以看出,由于拉伸、压缩、挤压和剪应力是沿受力截面近似均匀分布的;而弯曲和扭转剪应力是沿受力截面近似均匀分布的;而弯曲和扭转剪应力沿受力截面非均匀分布,只有表层最大。因此,剪应力沿受力截面非均匀分布,只有表层最大。因此,在截面上最大应力相同时,材料拉伸强度低于弯曲强在截面上最大应力相同时,材料拉伸强度低于弯曲强度,剪切强度低于扭切强度。度,剪切强度低于扭切强度。7.接触应力接触应力 有些零件在受载荷前是有些零件在受载荷前是点接触点接触(球轴承、圆弧齿(球轴承、圆弧齿轮)或轮)或线接触线接触(摩擦轮、直齿及斜齿渐开线齿轮、滚子(摩擦轮、直齿及斜齿渐开线齿轮、滚子轴承等),受载后在接触表面产生局部弹性变形,形成轴承等),受载后在接触表面产生局部弹性变形,形成小面积接触。这时虽然接触面积很小,但表层产生的局小面积接触。这时虽然接触面积很小,但表层产生的局部压应力却很大,该应力称为部压应力却很大,该应力称为接触应力接触应力,在接触应力作,在接触应力作用下的零件强度称为用下的零件强度称为接触强度接触强度。b bHmaxHmaxHminHmin21FF2a图图5.5 两圆柱体接触应力分布两圆柱体接触应力分布 图图5.5表示曲率半径各为表示曲率半径各为 1和和 2、长为、长为b的两个圆柱的两个圆柱体接触,载荷为体接触,载荷为F,由于接触表面局部弹性变形,形成由于接触表面局部弹性变形,形成一个一个2a b的矩形接触面积,该面上的接触应力分布是不的矩形接触面积,该面上的接触应力分布是不均匀的均匀的。 最大应力位最大应力位于接触面宽中于接触面宽中线处线处 两者应力大两者应力大小相等小相等 由弹性力学的赫兹(由弹性力学的赫兹(Hertz)公式可得最大接触应)公式可得最大接触应力为力为12max2212121111HFbEE(5.10)式中,式中, 1、 2为两接触体材料的泊松比为两接触体材料的泊松比 E1、E2为两接触体材料的弹性模量为两接触体材料的弹性模量 1、 2_ 两圆柱体接触处的曲率半径两圆柱体接触处的曲率半径,外接触取正号,内接触取外接触取正号,内接触取 负号负号,平面与圆柱或球接触,取平面曲率半径平面与圆柱或球接触,取平面曲率半径 2= 。(5.11)综合曲率半径综合曲率半径 12111 则则221212111EEE综合弹性模量综合弹性模量E 当零件工作时,接触点(或线)位置连续改变,其上当零件工作时,接触点(或线)位置连续改变,其上任一点处的接触应力将在任一点处的接触应力将在0到到 H max之间变动(比如,齿轮之间变动(比如,齿轮的接触应力),因此,接触变应力将是一个脉动循环变的接触应力),因此,接触变应力将是一个脉动循环变应力,而零件的破坏则属于应力,而零件的破坏则属于疲劳破坏疲劳破坏,这将在,这将在7.6节介绍。节介绍。bFEH564. 0max5.2.2 强度理论及其应用范围强度理论及其应用范围若零件的计算应力为若零件的计算应力为 ca、极限应力为、极限应力为 lim、安全系、安全系数为数为S,则零件强度校核的一般表达式为,则零件强度校核的一般表达式为 limcaS(5.12) 在通用零件的设计中,常用到以下三种强度理论:在通用零件的设计中,常用到以下三种强度理论: 在作静强度计算时,根据零件材料是塑性的或脆性在作静强度计算时,根据零件材料是塑性的或脆性的,分别采用的,分别采用屈服极限屈服极限 s或或强度极限强度极限 b作为零件的极限作为零件的极限应力。应力。 零件剖面上的应力如为单向应力状态,则危险剖面零件剖面上的应力如为单向应力状态,则危险剖面上的最大工作应力即为计算应力;对于复杂应力状态,上的最大工作应力即为计算应力;对于复杂应力状态,则应按一定的强度理论来求计算应力。则应按一定的强度理论来求计算应力。 当已知零件危险剖面上的主应力当已知零件危险剖面上的主应力 1 2 3时,按时,按此理论所得的拉伸或弯曲计算应力为此理论所得的拉伸或弯曲计算应力为 ca= 1 或或 b= 3 (5.13)取上两式中绝对值较大的一个。取上两式中绝对值较大的一个。 1.最大主应力理论(第一强度理论)最大主应力理论(第一强度理论) 这种理论认为,危险状态的折断都是由于单元体上这种理论认为,危险状态的折断都是由于单元体上最大拉应力(即主应力最大拉应力(即主应力 1)引起的,其他斜面上的应力)引起的,其他斜面上的应力对破坏没有影响。根据实践,这只对破坏没有影响。根据实践,这只适用于脆性材料适用于脆性材料(例(例如灰铸铁)的强度理论。脆性材料的抗压缩能力一般远如灰铸铁)的强度理论。脆性材料的抗压缩能力一般远大于抗拉伸能力,即压缩强度极限远大于拉伸强度极限。大于抗拉伸能力,即压缩强度极限远大于拉伸强度极限。 机械零件的应力状态为双向应力状态时,其应力机械零件的应力状态为双向应力状态时,其应力状态如图状态如图5.6所示。所示。yxxyyxxyxyxy图图5. 6 平面应力状态平面应力状态 ca= 1 或或 b= 3 (5.13) 取上两式中绝对值较大的一个。取上两式中绝对值较大的一个。 最大主应力为最大主应力为 1;亦即计算应力;亦即计算应力 ca为为22122xyxycaxy(5.14)或或22322xyxycaxy(5.15) 对于己知弯曲应力对于己知弯曲应力 b及扭转剪应力及扭转剪应力 的状况,令式的状况,令式(5.14)中的)中的 x= b, y=0, xy= ,则该式变为,则该式变为22122bbca (5.16)2.最大剪应力理论(第三强度理论)最大剪应力理论(第三强度理论) 当己知零件危险剖面上的主应力当己知零件危险剖面上的主应力 1 2 3时,计时,计算应力为算应力为 ca= 1 3 (5.17) 当己知如图当己知如图5.6所示的平面应力,在求计算应力时,所示的平面应力,在求计算应力时,可先按式(可先按式(5.14)及()及(5.15)求出主应力)求出主应力 1和和 3,然后代,然后代入式(入式(5.17)求得计算应力为)求得计算应力为 此理论认为危险状态的屈服是由于单元体中最大的此理论认为危险状态的屈服是由于单元体中最大的剪应力引起的,其他斜面上的剪应力对屈服没有影响。剪应力引起的,其他斜面上的剪应力对屈服没有影响。是适用于塑性材料(例如钢材)的强度理论。是适用于塑性材料(例如钢材)的强度理论。22()4caxyxy(5.18) 对于通常己知弯曲应力对于通常己知弯曲应力 b和扭转剪应力和扭转剪应力 的情况,计的情况,计算应力为算应力为224cab(5.19)3.统计平均剪应力理论统计平均剪应力理论(第四强度理论,又称最大形变能理论)(第四强度理论,又称最大形变能理论) 此理论认为虽然最大剪应力是危险状态材料屈服的此理论认为虽然最大剪应力是危险状态材料屈服的主要原因,但其他斜面上的剪应力也对屈服有影响,主要原因,但其他斜面上的剪应力也对屈服有影响,所以应该用一个既反映主要因素、又考虑次要因素的所以应该用一个既反映主要因素、又考虑次要因素的物理量来表示材料的屈服强度,这个量叫做物理量来表示材料的屈服强度,这个量叫做统计平均统计平均剪应力剪应力。这是与最大剪应力理论同样适用于塑性材料。这是与最大剪应力理论同样适用于塑性材料的强度理论。在复杂应力、二向应力和弯扭组合状态的强度理论。在复杂应力、二向应力和弯扭组合状态条件下,其计算式分别为条件下,其计算式分别为2221223311()()()2ca(5.20)222322xyxycaxy(5.21)(5.22)223cab(5.22)223cab 对比式(对比式(5.19)及()及(5.22): 上述强度理论并没有考虑温度、动载等影响,因而只能用上述强度理论并没有考虑温度、动载等影响,因而只能用来计算零件或构件在常温、静载下的强度。来计算零件或构件在常温、静载下的强度。 224cab(5.19) 可以看出按第四强度理论求出的计算应力比按第三强度理可以看出按第四强度理论求出的计算应力比按第三强度理论要小一些。论要小一些。 因此在同样材料和安全系数相等的条件下,可以得到较为因此在同样材料和安全系数相等的条件下,可以得到较为轻小的结构。不过在设计实践中,对于塑性材料制成的零件,轻小的结构。不过在设计实践中,对于塑性材料制成的零件,往往是根据使用经验应用不同的强度理论,并给出相应的许用往往是根据使用经验应用不同的强度理论,并给出相应的许用应力值。应力值。 ap5.3机械零件的变形机械零件的变形 材料的变形材料的变形 图图5.7表示表示Q235钢钢拉伸试验时的应力应拉伸试验时的应力应变曲线,即变曲线,即 - 曲线。曲线。1变形曲线变形曲线图图5.7 Q345钢的应力应变曲线钢的应力应变曲线 ObscBde21 其弹性阶段为其弹性阶段为oa。屈服阶段为屈服阶段为ab、 强化阶强化阶段为段为bc、 局部变形阶段局部变形阶段为为cd。 a、b、c三点的高度三点的高度分别代表比例极限分别代表比例极限 P、屈服极限屈服极限 s、强度极限、强度极限 B。 图图5.8为五种不同材料的为五种不同材料的 - 曲线的比较,曲线的比较, 图图5.8 几种材料的应力一应变曲线几种材料的应力一应变曲线O 其中其中16Mn钢的上述钢的上述四个阶段都很明显;铝合金和球墨铸铁没有屈服阶段,但其余三四个阶段都很明显;铝合金和球墨铸铁没有屈服阶段,但其余三个阶段较明显;锰矾钢只有弹性阶段和强化阶段,没有屈服阶段个阶段较明显;锰矾钢只有弹性阶段和强化阶段,没有屈服阶段和局部变形阶段;塑料则没有弹性阶段。和局部变形阶段;塑料则没有弹性阶段。l锰钒钢;锰钒钢;2Q345钢;钢; 3铝合金;铝合金;4球墨铸铁;球墨铸铁;5塑料塑料以以Q345钢为例,在拉伸试验时,当拉力较小时,在钢为例,在拉伸试验时,当拉力较小时,在弹性阶段卸载,变形按原来加载时的弹性阶段卸载,变形按原来加载时的 - 直线下降,变形直线下降,变形完全消失,恢复原来尺寸。但当拉力较大时,如超过弹性完全消失,恢复原来尺寸。但当拉力较大时,如超过弹性阶段后,变形将无法完全恢复。阶段后,变形将无法完全恢复。例如在图例如在图5.7上的上的e点处卸点处卸载时,载时, - 的关系从卸载时新的关系从卸载时新的屈服极限的屈服极限e开始沿着与弹性开始沿着与弹性阶段同样斜率的直线下降,阶段同样斜率的直线下降,不能完全恢复原来尺寸。不能完全恢复原来尺寸。其其恢复的部分(恢复的部分( 2- 1)为)为弹性弹性变形变形,不能恢复的部分(,不能恢复的部分( 1)为为塑性变形塑性变形。重复加载时,。重复加载时,则沿卸载时的则沿卸载时的 - 关系的直线关系的直线上升到新的屈服极限,这种上升到新的屈服极限,这种现象现象叫冷作硬化叫冷作硬化,它提高了,它提高了材料的屈服极限,降低了其材料的屈服极限,降低了其塑性而使其变脆。有些零件塑性而使其变脆。有些零件利用冷作硬化原理提高强度,利用冷作硬化原理提高强度,如弹簧的强压处理,轴的滚如弹簧的强压处理,轴的滚压强化等。压强化等。apObscBde21图图5.7 Q345钢的应力应变曲线钢的应力应变曲线 在强度设计时,多数零件不允许有塑性变形。但在强度设计时,多数零件不允许有塑性变形。但是,有些零件允许在局部有塑性变形的条件下工作。是,有些零件允许在局部有塑性变形的条件下工作。 2变形量计算变形量计算(1)拉伸或压缩变形)拉伸或压缩变形 FllAE (5.23a)或或llE (5.23b)式中,式中, l伸长量或压缩量伸长量或压缩量mm; F载荷载荷N; l杆长杆长mm; A杆截面面积杆截面面积mm2; E材料的弹性模量材料的弹性模量N/mm2。图图5.9 拉伸和压缩变形拉伸和压缩变形 FFFF杆件拉伸时的伸长为杆件拉伸时的伸长为如图如图5.9所示,所示,(2)扭转变形)扭转变形TLGJ(5.24)式中:式中: 扭转角,扭转角,rad;J圆形截面的极惯性矩圆形截面的极惯性矩m4;J= d4/32 0.1d4,d为轴径;为轴径;G材料的剪切弹性模量材料的剪切弹性模量Pa;T转矩转矩Nm;L轴长轴长m。图图5.10 扭转变形扭转变形如图如图5.10所示,所示,TTL由式(由式(5.24)可得单位长度扭角为)可得单位长度扭角为TLGJ(5.25)圆杆扭转时的转角为圆杆扭转时的转角为结构与受力情况如图结构与受力情况如图5.11。常用的弯曲变形计算方法有莫尔图解分析法(又称常用的弯曲变形计算方法有莫尔图解分析法(又称虚梁法)和叠加法。虚梁法)和叠加法。 莫尔图解分析法莫尔图解分析法 图图5.11 弯曲变形示意图弯曲变形示意图(3)弯曲变形)弯曲变形ymaxxFbaL12可查得端点转角可查得端点转角 的公式为:的公式为:最大挠度最大挠度ymax的公式为的公式为22()/3xLb式中,式中,E材料的弹性模量;材料的弹性模量; Iy截面对中性轴的惯性矩。最大挠度位于截面对中性轴的惯性矩。最大挠度位于处。处。(5.26) LEIaLFbLEIbLFbyy6)(6)(222221(5.27)LEIbLFbyy39)(2322max如果载荷比较复杂,往往不能直接从表上查得转如果载荷比较复杂,往往不能直接从表上查得转角和挠度的公式。则需用角和挠度的公式。则需用叠加法叠加法计算。计算。当同时作用有几个载荷,可以把载荷分开考虑,当同时作用有几个载荷,可以把载荷分开考虑,然后将每种载荷所得的然后将每种载荷所得的变形相加变形相加。当载荷不是作用在。当载荷不是作用在一个平面内,则只需将各载荷一个平面内,则只需将各载荷分解分解为为垂直垂直和和水平水平平面平面上的分力,分别求出两个方向上的变形,然后求出其上的分力,分别求出两个方向上的变形,然后求出其几何和几何和。用叠加法计算轴弯曲变形的实例见第。用叠加法计算轴弯曲变形的实例见第7章。章。