高级氧化技术在水和废水处理中的应用ppt课件.ppt
高级氧化处理 (AOPs) Advanced oxidation processes (abbreviation: AOPs)refers to a set of chemical treatment procedures designed to remove organic and inorganic materials in waste water by oxidation. Contaminants are oxidized by four different reagents: ozone, hydrogen peroxide, oxygen, and air, in precise, pre-programmed dosages, sequences, and combinations. These procedures may also be combined with UV irradiation and specific catalysts. This results in the development of hydroxyl radicals. The AOP procedure is particularly useful for cleaning biologically toxic or non-degradable materials such as aromatics, pesticides, petroleum constituents, and volatile organic compounds in waste water 1. (来源:http:/en.wikipedia.org/wiki/Advanced_oxidation_process)高级氧化处理 (AOPs)Ruppert and Rupert (1994) have defined the AOPs as processes which involved the generation of hydroxyl radicals in sufficient quantity, such as O3/OH-, O3/H2O2, Fe2+/H2O2, UVC/H2O2, UVC/O3 and UVA/TiO2 .(Ruppert G., Rupert B.G.H. UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction comparison of advanced oxidation processes for wastewater treatment. Chemosphere 1994, 28, 1447-1454.)高级氧化处理 (AOPs) 高级氧化处理是20世纪80年代开始形成的处理有毒污染物技术,它的特点是通过反应产生羟基自由基,该自由基具有极强的氧化性,通过自由基反应能够将有机污染物有效地分解,甚至彻底地转化为无害无机物,如二氧化碳和水等。由于高级氧化工艺具有氧化性强、操作条件易于控制的优点,因此引起世界各国的重视,并相继开展了该方向的研究与开发工作。(来源:环境工程中的高级氧化技术)高级氧化处理 (AOPs)Sulfate radical-based AOPs(1)UV/S2O82- S2O82-+ photons or heat 2SO4- SO4- + OH- SO42- + HO SO4- +H2O HSO4-+ HO(2)Fe2+/S2O82- , Ag+/ S2O82- Ag+ + S2O82- Ag2+ + SO4-+ SO42- Fe2+ S2O82- Fe3+ SO42- + SO4- (3) Co2+/HSO5-, Fe2+/ HSO5- Co2+ HSO5- Co3+ SO4-+ OH- Fe2+ HSO5- Fe3+ SO4-+ OH-高级氧化处理 (AOPs)(4) Granular Activated Carbon (GAC)/S2O82- GAC-OOH +S2O82- SO4- +GAC-OO + HSO4- GAC-OOH +S2O82- SO4- +GAC-O + HSO4-Table 1. Relative power of common oxidants Compound Oxidation potential (volts) Relative power of chlorine Fluorine 3.06 2.25Sulfate radical ( SO4-)2.5-3.10 1.84-2.28 Hydroxyl radical (HO) 2.82.05Atomic oxygen (O) 2.42 1.78 Ferrate (VI)0.7-2.20.52-1.62Ozone 2.08 1.52Perhydroxyl radical (HOO)1.701.25Permanganate 1.671.23Chlorine dioxide 1.501.10Hypochlorous acid 1.491.10Chlorine 1.361.0Bromine 1.090.80Hydrogen peroxide 0.870.64Iodine 0.540.40Oxygen 0.400.29臭氧(Ozone) Pale blue gas, slightly soluble in water Sharp odor Harmful effects on the respiratory systems of animals Powerful oxidizing agent臭氧技术在水处理中的应用Removal of inorganic species such as ammonia nitrogen (1) (2) in the presence of bromideRemoval of Fe2+ and Mn2+ Oxidation of natural organic matter like humic substances (Humic substances are precursors of THMs and favor the regrowth in the network)3OBrHBrO 42HBrONHNBr32323322()OH OOFeFeFe OHMnMnO 343ONHNO 臭氧技术在水处理中的应用 Increase in biodegradability Oxidation of Persistent Organic Pollutants (POPs) Disinfection-more effective biocide than hydroxyl radicals (Can kill bacteria, virus and algae by reacting with cytoplasmic substances and degrading chromosomal deoxyribonucleic acid) Addition of 1g/L O3 leads to 99.99% reduction of E.coli in one minute. Ozonation has been widely used in the disinfection of drinking water in developed countries.臭氧处理 (Ozone) Onsite generation (half-life in atmospheric conditions is half an hour, 2O33O2) Highly pH-dependent (1) O3 + OH- HO2- + O2 (2) HO2- + O3 O3- + HO2 (3) HO2 H+ + O2- (4) O2- + O3 O3- + O2 (5) O3- + H+ HO + O2 臭氧处理 (Ozone)0.000.020.040.060.080.100.120.140.160.1824681012pHok (min-1)Fig. 1b Peudo-first-order rate constant of 0.1mM linuron (利谷隆)in sole-O3 system at various pH levels ( O3 =1.7110-5 M )(来源:Rao Y.F., Chu W. Chemosphere 2009, 74, 1444-1449) Fig. 1a Peudo-first-order rate constant of 0.2mM Carbofuran (克百威) in sole-O3 system at various pH levels ( O3 =1.810-5 M )(来源:Lau T.K., Chu W., Graham N. Water Sci. Tech. 2007, 55, 275-280.)臭氧处理 (Ozone)Highly selective Table 2. Ozonation rate constants and OH rate constants for some organic compounds (Legube B. and Leitner N.K.V. Catalysis Today, 1999, 53, 61-72)CompoundskO3(M-1s-1)kOH (M-1s-1)Benzene20.47.8 109Nitrobenzene0.090.023.9 109Toluene14 33.0 109Formic acid5 51.3108Oxalic acid410-21.4106Acetic acid310-51.6107Succinic acid310-23.1108臭氧处理 (Ozone)Fig. 2. Comparison of linuron decay (C/C0) and TOC removal by the different treatment processes at pH 6 (C0 = 0.1 mM) (来源: Rao Y.F., Chu W. Chemosphere 2009, 74, 1444-1449)Highly selective Low mineralization臭氧与其他技术联合处理 UV/O3 O3/H2O2 O3 +H2O2 OH + HO2- + O2 (k10-2 M-1s-1) O3 + HO2- OH + 2O2 k=(5.51.0)106M-1s-1) US/O3 Heterogeneous catalytic ozonation such as AC (Activated Carbon)/O3, MnO2/O3, Al2O3/O3, TiO2/O3 Homogeneous catalytic ozonation by metallic ions Ozonation/electrolysis UV/O3 Direct Photolysis Direct oxidation by ozone Oxidation by hydroxyl radicals (1) O3 + H2O + hv H2O2 + O2 (2) H2O2 + hv 2 OH UV/Ozone ReactorTable 3 Design data for a 151 m3/day Ultrox plantReactorDimensions: L x W x H (m) 2.5 x 4.9 x 1.5Wet volume, (L) 14,951UV lamps:Number of 65 watt lamps 378Total power, (KW) 25Ozone generatorDimensions: L x W x H (m) 1.7 x 1.8 x 1.2gms ozone/min 5.3Kg ozone/d 7.7Total power, (KW) 7.0Total energy required, (KW/day) 768Costs in the above table were considered to be competitive with activated carbon.Typical design data for a 150 m3/d UV/ozone treatment process are shown in the above table. The plant is designed to reduce a 50 ppm PCBfeed concentration to a 1 ppm effluent.UV/Ozone Reactor Ultrox (Jones, 1996) US/O3 Pyrolysis Oxidation by ozone Oxidation by hydroxyl radicalsO3O2+ O(3P)USO(3P) +H2OOHO3 +H2O2 OH + HO2- + O2 (k10-2 M-1s-1) O3 + HO2- OH + 2O2 k=(5.51.0)106M-1s-1)US/O3(来源:He Z.Q., Song S., et al. Chemosphere 2007, 69, 191-199).US/O3(来源:Ning B., Graham N.J., Lickiss P.D. Water Environment Research 2007, 79, 2427-2436).Heterogeneous Catalytic Ozonation AC (Activated Carbon)/Ozone (1). Generation of free radicals: O3+ AC OH (2). Generation of surace radicals: O3+ AC AC-O AC-R+AC-O P TiO2/Ozone Ceramic honeycomb/OzoneAC/OzoneFig. 3. Evolution of the dimensionless concentration of oxalic acid at pH 3(C0 = 1 mM, AC = 0.5 g/L, Ctert-butanol = 10 mM).(来源:Faria, P.C.C., Orfao, J.J.M. et al. Applied catalysis B:Environmental, 2008, 79, 237-243).TiO2/Ozone(来源:Beltran F.J., Rivas F.J., Espinosa R.M. Applied Catalysis B: Environmental 2002, 39, 221-231).Ceramic honeycomb(2MgO2Al2O3-5SiO2)/Ozone(来源:Zhao L., Ma J., Sun Z.Z. Applied Catalysis B: Environmental 2008, 79, 244-253).Ceramic honeycomb/Ozone(来源:Zhao L., Ma J., Sun Z.Z. Applied Catalysis B: Environmental 2008, 79, 244-253).Homogeneous Catalytic Ozonation by metallic ions Reaction Mechanism Fe2+ O3 Fe3+ O3- O3-+ H+ HO3 OH + O2Catalytic ozonation by metallic ionsO3 alone Pb2+ Cu2+ Zn2+ Fe2+ Ti2+ Mn2+(来源:Ni C.H., Chen J.N., Yang P.Y. Water Science and Technolgoy 2002, 47, 77-82).Catalytic ozonation by Mn2+(来源: Ma J., Graham,N.J.D. Water Research 2000, 34, 3822-3828).Catalytic ozonation by Mn2+(来源:Xiao H., Liu R.P., et al. Chemosphere 2008, 72, 1006-1012).Ozonation/electrolysis Reaction Mechanism O3+ e O3- at cathodes O3- + H2O OH + O2+OH-Ozonation/electrolysis(来源:Kishimoto N., Morita Y., et al. Water Research 2005, 39, 4661-4672).Ozonation/electrolysis(来源:Kishimoto N., Morita Y., et al. Water Research 2005, 39, 4661-4672).Other Oxidation Technology SO4-based AOPs UV/Persulfate (S2O82-), heat/ S2O82-, Fe2+/S2O82- , Ag+/ S2O82-, Co2+/peroxymonosulfate(HSO5-), Fe2+/ HSO5- , AC/Persulfate Ferrate (VI) PermanganateSO4- based AOPs(来源:Yang S.Y., Wang P., et al. Journal of Hazardous Materials 2010, 179, 552-558).SO4- based AOPs(来源:Yang S.Y., Wang P., et al. Journal of Hazardous Materials 2010, 179, 552-558).AC/Persulfate(来源:Yang S.Y., Yang X., et al. Journal of Hazardous Materials 2011, 186, 659-666).Ferrate (VI) In acidic media: FeO42- + 8H+ +3e- Fe3+ + 4H2O E0 =2.2V In basic media: FeO42- + 4H2O +3e- Fe(OH)3 +5OH- E0=0.7v高铁酸盐在水处理中应用研高铁酸盐在水处理中应用研究究 Removal of cyanides (CN-1NCO-) Simultaneous removal of organic pollutants and phosphate Elimination of sludge odor Decolorization Oxidation of POPs CoagulationPermanganate (MnO4-1)In an acidic solution, permanganate(VII) is reduced to the colourless +2 oxidation state of the manganese(II) (Mn2+) ion. 8 H+ + MnO4 + 5 e Mn2+ + 4 H2OIn a strongly basic solution, permanganate(VII) is reduced to the green +6 oxidation state of the manganate MnO42. MnO4 + e MnO42In a neutral medium, however, it gets reduced to the brown +4 oxidation state of manganese dioxide MnO2. 2 H2O + MnO4 + 3 e MnO2 + 4 OH+Strong oxidizer,a permanganate can oxidize an amine to a nitro compound,23 an alcohol to a ketone,4 an aldehyde to a carboxylic acid,56 a terminal alkene to a carboxylic acid,7 oxalic acid to carbon dioxide,8 and an alkene to a diol.Permanganate (MnO4-1) In alkene oxidations one intermediate is a cyclic Mn(V) species:(来源:http:/en.wikipedia.org/wiki/Permanganate)高锰酸钾在水处理中的应高锰酸钾在水处理中的应用用 强化预氯化消毒(减少了致癌物三卤甲烷的生成) 去除微量重金属离子例如Mn2+,As3+ ,Pb2+ Mn2+2KMnO4+2H2O=5MnO2+2K+4H+(中性和微酸性) 治理染料废水 去除难降解有机污染物 去除藻类(氧化降解微囊藻毒素MC-LR) 消毒去除微量去除微量Mn2+(三亚中法供水有限公(三亚中法供水有限公司司-水库)水库)(来源:王菊,潘孝楼,科技资讯,2009,34,115-116.)难降解有机污染物的去除难降解有机污染物的去除(来源:Hu, L.H., Martin, H.M. et al. Environmental Science & Technology, 2009, 43, 509-515.)1、藤岛昭(光触媒之父)和本田健一 (Fujishima, A. and Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238(5358), 37-38.)藤岛昭藤岛昭光催化技术的应用研究 高速公路的隔音墙和街道路灯等装置上 汽车的喷涂材料 光催化剂公路(日本千叶县) 医学上消毒以及用来杀死癌细胞 保鲜水果 利用二氧化钛的亲水性制造不用擦拭的汽车后视镜等产品(东陶公司的渡部俊) 脱臭 染料电池 光催化制氢 *水处理(去除金属离子和难降解有机污染物) 贵重金属的回收(铂、金)二氧化钛的载体二氧化钛的载体 Activated Carbon(活性炭) 玻璃 铝片 硅胶 陶瓷 高分子聚合物 Composite Photocatalysts-TiO2/CdS, TiO2/Cu2O, TiO2/Fe2O3, TiO2/WO3, TiO2/Bi2O3 and so on. Transition Metal Doping-Fe, Cr, V, Co, Zr etc. Non-metal Doping-N, C, P, S, etc. Surface Sensitization-Dye, polymerComposite Photocatalysts(来源:孙德智等,环境工程中的高级氧化技术,p241)N-doped TiO2(来源:Asahi, R. et al. Science, 2001, 293, 269-271)Wavelength, nmSurface Sensitization(来源:孙德智等,环境工程中的高级氧化技术,p243)1.染料容易吸附在半导体表面 2.染料激发态(通常是单线态)的电位与半导体导带电位相匹配。(来源:Li, X.Z., Chen, C.C., Zhao, J.C. Langmuir, 2001, 17, 4118-4122.)0123450.00.20.40.60.81.0 C/C0Time, hr TiO2/H2O2/Vis (Xe lamp at 420 nm)0123450.00.20.40.60.81.0 C/C0Time, hr TiO2/H2O2 in dark TiO2/Vis (Xe at 420 nm) H2O2/Vis(Xe at 420 nm) TiO2- Purge O2/Vis (Xe at 420 nm)(来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)Figure 1. LNR degradation under different reaction conditions Theory 1: Titanium peroxide complex formed on the TiO2 surface could extend the photoresponse of TiO2 to the visible region and can be excited by visible light. The excited surface complex injects an electron to the conduction band of TiO2 where the electrons on the conduction band of TiO2, then, initiate the decomposition of H2O2 to produce hydroxyl radicals (Li et al. 2001). (来源:Li, X.Z., Chen, C.C., Zhao, J.C. Langmuir, 2001, 17, 4118-4122.)1.Whether or not electron is generated in this system? 2.Whether or not hydroxyl radicals play a key role in the degradation of organic compound in this system? Effect of radical scavengers Effect of radical scavengers on visible-light photocatalysis of LNR with the assistance of H2O2. (来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)The Generation of Photocurrent01002003004005006007000.20.30.40.50.60.70.80.91.01.11.21.31.4 OFFLight ONPhotocurrent, Time, SecLight ONOFFwith H2O2without H2O2(a)(b)Visible-light-induced current (Iph) generation on aTiO2/ITO electrode in water with or without H2O2(来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)CompoundRetention timeMolecular weightMolecular ion and main fragmentsStructural formulaDetected inUV Vis18.96186185,165,141,11929.49278277, 250, 233, 217,119310.02262261, 156, 119,109410.65200199, 42,137,119512.62200199, 137, 119613.90230229, 37,119,109714.61264263,176,119,109814.83250249,219,202,176,137,119,109 915.44, 15.56220219,203,176, 137119,109NHOHClCONH2NHClClCONOCH3COOHNHClClCONOCH3HCONHOHClCONHCH3NHClOHCONHCH3NHOHClCONOCH3CH3NHHOClClCONHCOOHNHHOClClCONHCH2OHNHClClCONH2HOContd1015.68234233,203,160,137,119,1091116.31204203, 160, 137,119,1091216.69248247,203,88,160,137,119,1091316.93234233, 202,176, 137,119,1091417.46218217, 160, 137,119,1091518.93232231,202,188 160, 137,119.10916 and 1719.30, 19.72264263, 233, 217,202,188,156,119,109 orNHClClCONHCH2OHNHClClCONH2NHClClCONHCOOHNHHOClClCONHCH3NHClClCONHCH3NHClClCONHCHONHClClCONOCH3CH2OHNHClClCONOCH2OHCH3(来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)NHClClCONOCH3CH3NHClClCONHCH3NHOHClCONOCH3CH3NHOHClCONH2NHClClCONOCH3COOHNHClClNHCH2OHNHHOClClCONHCH3NHOHClNHCH3NHClClCONHCHONHHOClClCONHCH2OHNHClCONHCOOHNHClClCNH2HONHClClCONH2ClClNCONH2ClClOHClNC ONH2OHClCl-, NH4+, NO3-, CO2, H2ONHClClCONOCH2OHCH316NHClClCONOCHOCH338131215104 or 5 (isomers)61429NHClClCONOCH3CH2OH17ClO111OCCONHClClCONHHOCOOH7(来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)Comparison between the evolution profiles of generated intermediates in Vis/TiO2/H2O2 and UV/TiO2 system(a). The evolution profiles of generated intermediates in Vis/TiO2/H2O2; (b). The evolution profiles of intermediates in UV/TiO2 system. (来源:Rao, Y.F., Chu, W. Environmental Science & Technology, 2009, 43, 6183-6189.)CBVBe-HOOTihv (visible)H2O2HOLNRIntermediatesCO2, H2O, NH4+, Cl-, NO3-TiHOScheme 7-1: Surface-Complex-Mediated Photodegradation of LNR in TiO2 suspension with the existence of H2O2 under Visible Irradiation